
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY/ 

NATIONAL COMPUTER SECURITY CENTER 

15TH NATIONAL COMPUTER SECURITY CONFERENCE 

October 13-16,1992 
Baltimore Convention Center 

Baltimore, MD 

PROCEEDINGS 
VOLUME II 

Information Systems Security: 
Building Blocks to the Future 

20090330060 



DEFENSE TECHNICAL INFORMATION CENTER 

tutor *wtio* for the- Defense Cottutumky 

DTIC® has determined on Q4 /1Q /oCiJ\ that this Technical Document has the 
Distribution Statement checked below. The current distribution for this document can 
be found in the DTIC® Technical Report Database. 

E3  DISTRIBUTION STATEMENT A. Approved for public release; distribution is 
unlimited. 

• © COPYRIGHTED; U.S. Government or Federal Rights License. All other rights 
and uses except those permitted by copyright law are reserved by the copyright owner. 

• DISTRIBUTION STATEMENT B. Distribution authorized to U.S. Government 
agencies only (fill in reason) (date of determination). Other requests for this document 
shall be referred to (insert controlling DoD office) 

• DISTRIBUTION STATEMENT C.  Distribution authorized to U.S. Government 
Agencies and their contractors (fill in reason) (date of determination). Other requests for 
this document shall be referred to (insert controlling DoD office) 

• DISTRIBUTION STATEMENT D. Distribution authorized to the Department of 
Defense and U.S. DoD contractors only (fill in reason) (date of determination). Other 
requests shall be referred to (insert controlling DoD office). 

• DISTRIBUTION STATEMENT E. Distribution authorized to DoD Components only 
(fill in reason) (date of determination). Other requests shall be referred to (insert 
controlling DoD office). 

• DISTRIBUTION STATEMENT F. Further dissemination only as directed by 
(inserting controlling DoD office) (date of determination) or higher DoD authority. 

Distribution Statement F is also used when a document does not contain a distribution 
statement and no distribution statement can be determined. 

• DISTRIBUTION STATEMENT X. Distribution authorized to U.S. Government 
Agencies and private individuals or enterprises eligible to obtain export-controlled 
technical data in accordance with DoDD 5230.25; (date of determination). DoD 
Controlling Office is (insert controlling DoD office). 



Welcome! 

The National Computer Security Center (NCSC) and the Computer Systems 

Laboratory (CSL) are pleased to welcome you to the Fifteenth Annual National 

Computer Security Conference. We believe that the Conference will stimulate a vital 

and dynamic exchange of information and foster an understanding of emerging 

technologies. 

The theme for this year's conference, "Information Systems Security: Building 

Blocks to the Future," reflects the continuing importance of the broader information 

systems security issues facing us. At the heart of these issues are two items which will 

receive special emphasis this week-Information Systems Security Criteria (and how it 

affects us), and the actions associated with organizational accreditation. These areas 

will be highlighted by emphasizing how organizations are integrating information 

security solutions. You will observe how Government, Industry, and Academe are 

cooperating to extend the state-of-the-art technology to information systems 

security. Presentations will provide you with some thoughtful insights as well as 

innovative ideas in developing your own solutions. Additionally, panel members will 

address how they develop their automated information security responsibilities. 

This cooperative educational program will refresh us with the perspectives of the 

past, and will project directions of the future. 

We firmly believe that awareness and responsibility are the foundations of all 

information security programs. For our collective success, we ask that you reflect on 

the ideas and information presented this week; then share this information with 

your peers, your management, your administration, and your customers. By sharing 

this information, we will develop a stronger knowledge base for tomorrow's 

journey. 

PATRICk^ QM^Q^tR, JR 
Director 

National Computer Security Center 

.MESH. BURROWS 
Director 

Computer Systems Laboratory 



Conference 

Dr. Marshall Abrams 
Roland Albert 
James P. Anderson 
Devolyn Arnold 
James Arnold 
V.A. Ashby 
David Balenson 
Dr. D. Elliott Bell 
James W. Birch 
W.Earl Boebert 
Edward Borodkin 
Dr. Martha Branstad 
Dr.Blame Burnham 
Dr. John Campbell 
David Chizmadia 
Dr. Deborah Cooper 
Donna Dodson 
Dr. Deborah Downs 
David Ferraiolo 
Ellen Flahavin 
L. Dain Gary 
William Geer 
Virgil Gibson 
Dennis Gilbert 
Irene Gilbert 
Captain James Goldston, USAF 
Dr. Joshua Guttman 
Dr. Grace Hammonds 
Douglas Hardie 
Ronda Henning 
Dr. Harold Highland, FICS 
Jack Holleran 
Hilary H. Hosmer 
Russell Housley 
Howard Israel 

The MITRE Corporation 
Department of Defense 
J.P.Anderson Company 
Department of Defense 
Department of Defense 
The MITRE Corporation 

Trusted Information Systems, Inc. 
BBND 

Secure Systems, Inc. 
Secure Computing Technology Corporation 

National Computer Security Center 
Trusted Information Systems, Inc. 

Department of Defense 
Department of Defense 
Department of Defense 

Unisys 
National Institute of Standards and Technology 

The AEROSPACE Corporation 
National Institute of Standards and Technology 
National Institute of Standards and Technology 

Carnegie Mellon University 
AFCSC 

Grumann Data Systems 
National Institute of Standards and Technology 
National Institute of Standards and Technology 

AFCSC 
The MITRE Corporation 

AGCS, Inc. 
Unisys Corporation 
Harris Corporation 

Compulit, Inc. 
National Computer Security Center 

Data Security, Inc. 
XEROX Information Systems 

AT&T Bell Laboratories 



Referees 
Professor Sushil Jajodia 
John Keenan 
Dr. Richard Kemmerer 
Dr. Steven Kent 
Richard Kuhn 
Steven LaFountain 
Paul A. Lambert 
Dr. Carl Landwehr 
Robert Lau 
Dr. Theodore M.P. Lee 
Steven B. Lipner 
Teresa Lunt 
Frank Mayer 
Dr. Catherine Meadows 
Sally Meglathery 
William H. Murray 
Noel Nazario 
Dr. Peter Neumann 
Nick Pantiuk 
Donn Parker 
Dr. Charles Pfleeger 
Professor Ravi Sandhu 
Marvin Schaefer 
Daniel Schnackenberg 
Miles Smid 
Brian Snow 
Dr. Dennis Steinauer 
Mario Tinto 
Eugene Troy 
Kenneth vanWyk 
Grant Wagner 
Major Glenn Watt, USAF 
Wayne Weingaertner 
Howard Weiss 
Roy Wood 

George Mason University 
CISEC 

University Of California, Santa Barbara 
BBN 

National Institute of Standards and Technology 
Department of Defense 

Motorola GEG 
Naval Research Laboratory 

Department of Defense 
Trusted Information Systems, Inc. 

The MITRE Corporation 
SRI International 

Aerospace Corporation 
Naval Research Laboratory 
New York Stock Exchange 

Deloitte & Touche 
National Institute of Standards and Technology 

SRI International 
Grumann Data Systems 

SRI International 
Institute for Defense Analyses 

George Mason University 
CTA, Inc. 

Boeing Aerospace Corporation 
National Institute of Standards and Technology 

Department of Defense 
National Institute of Standards and Technology 

Department of Defense 
National Institute of Standards and Technology 

Carnegie Mellon University 
Department of Defense 

USAF Strategic Air Command 
Department of Defense 

SPARTA 
Department of Defense 

11 



Awards Ceremony 
6:00 p.m., Thursday, October 15 
Convention Center, Terrace Level 

A joint awards ceremony will be held at which the National Institute of Standards 
and Technology (NIST) and the National Computer Security Center (NCSC) will honor 
the vendors who have successfully developed products meeting the standards of the 
respective organizations. 

The Computer Security Division at NIST provides validation services for vendors 
to use in testing devices for conformance to security standards defined in three Federal 
Information Processing Standards (FIPS): FIPS 46-1, The Data Encryption Standard 
(DES), FIPS 113, Computer Data Authentication, and FIPS 171, Key Management 
Using ANSI X9.17. 

Conformance to FIPS 46-1 is tested using the Monte Carlo test described in NBS 
Special Publication 500-20, Validating the Correctness of Hardware Implementations of 
the NBS Data Encryption Standard which requires performing eight million encryptions 
and four million decryptions. 

Conformance to FIPS 113 and its American Standards Institute counterpart, 
ANSI X9.9, Financial Institution Message Authentication (Wholesale) is tested using an 
electronic bulletin board (EBB) test as specified in NBS Special Publication 500-156, 
Message Authentication Code (MAC) Validation System: Requirements and Procedures. 
The test consists of a series of challenges and responses in which the vendor is requested 
to either compute or verify an MAC using a specified randomly generated key. 

Conformance to FIPS 171, which adopts ANSI X9.17, Financial Institution Key 
Management (Wholesale), is also tested using an EBB as specified in a document 
entitled NIST Key Management Validation System Point-to-Point (PTP) Requirements 

The NCSC recognizes vendors who contribute to the availability of trusted 
products and thus expand the range of solutions from which customers may select to 
secure their data. The products are placed on the Evaluated Products List (EPL) 
following a successful evaluation against the Trusted Computer Systems Evaluation 
Criteria including its interpretations: Trusted Database Interpretation, Trusted Network 
Interpretation, and Trusted Subsystem Interpretation. Vendors who have completed the 
evaluation process will receive a formal certificate of completion from the Director, 
NCSC marking the addition to the EPL. In addition, vendors will receive honorable 
mention for being in the final stages of an evaluation as evidenced by transition into the 
Formal Evaluation phase or for placing a new release of a trusted product on the EPL by 
participation in the Ratings Maintenance Program. The success of the Trusted Product 
Evaluation Program is made possible by the commitment of the vendor community. 

We congratulate all who have earned these awards. 

in 



15th National Computer Security Conference 
Table of Contents 

Refereed Papers 
1     Accreditation: Is it a Security Requirement or a Good Management Practice? 

Thomas E. Anderson, USATREX International Inc. 

9     Application Layer Security Requirements of a Medical Information System 
Deborah Hamilton, Hewlett-Packard Laboratories 

18     An Approach for Multilevel Security (MLS) Acquisition 
Bill Neugent, The MITRE Corporation 

28     Architectural Implications of Covert Channels 
Norman E. Proctor, Peter G. Neumann, 

Computer Science Lab, SRI International 

44     Assessing Modularity in Trusted Computing Bases 
J. L. Arnold, R. J. Bottomly, National Security Agency 
D. B. Baker, D. D. Downs, The Aerospace Corporation 
F. Belvin, S. Chokhani, The MITRE Corporation 

57     Companion Document Series to the Trusted Database Management System 
Interpretation 

LouAnna Notargiacomo, Victoria Ashby, Vinti Doshi, JarellannFilsinger, 
Sushil Jajodia, The MITRE Corporation 
Lieutenant Colonel Ron Ross, USA, National Computer Security Center 

66     Computer Security and Total Quality Management 
Major Gregory B. White, USAF Academy 
Mr. Lee Sutterfield, AFCSCISRO 
Mr. Chuck Arvin,CTA 

76     Concept for a Smart Card Kerberos 
Marjan Krajewski, Jr., The MITRE Corporation 

84     Concept Paper--An Overview of the Proposed Trust Technology Assessment 
Program 

Ellen E. Flahavin, Patricia R. Toth, Computer Security Division, National 
Institute of Standards and Technology 

93     Current Endorsed Tools List (ETL) Examples Research Lessons Learned 
Cristi Garvey, Aaron Goldstein, Eric Anderson, 

TRW Systems Integration Group 

101     Data Security for Personal Computers 
Paul Bicknell, The MITRE Corporation 

111     Defense Against Computer Aids 
Horace a. Peele, Air Force Intelligence Command 

120     E-Mail Privacy and the Law 
Christine Axsmith, Esq., ManTech Strategic Associates 

126     Electronic Measurement of Software Sharing for Computer Virus 
Epidemiology 

Larry de La Beaujardiere, Department of Computer Science, University of 
California 

IV 



134     Enforcing Entity and Referential Integrity in Multilevel Secure Databases 
Vinti M. Doshi, Sushil Jajodia, The MITRE Corporation 

144     Evolving Criteria for Evaluation: The Challenge for the International 
Integrator of the 90s 

Virgil Gibson, Joan Fowler, Grumman Data Systems 

153     An Example Complex Application for High-Assurance Systems 
Frank L. Mayer, The Aerospace Corporation 
Steven J. Padilla, SPARTA, Inc. 

165     Experience with a Penetration Analysis Method and Tool 
Sarbari Gupta, Virgil D. Gligor, 

Electrical Engineering Department, University of Maryland 

184     Extending Our Hardware Base: A Worked Example 
Noelle McAuliffe, Trusted Information Systems, Inc. 

194     Finding Security Flaws in Concurrent and Sequential Designs Using 
Planning Techniques 

Deborah A. Frincke, Myla Archer, Karl Levitt, 
Division of Computer Science, University of California, Davis 

204     A Foundation for Covert Channel Analysis 
Todd Fine, Secure Computing Corporation 

213     General Issues to be Resolved in Achieving Multilevel Security (MLS) 
Bill Neugent, The MITRE Corporation 

221      Implementation Considerations for the Typed Access Matrix Model in a 
Distributed Environment 

Ravi S. Sandhu, Gurprett S. Suri, Center for Secure Information Systems 
& Department of Information and Software Systems Engineering, George 
Mason University 

236     Implications of Monoinstantiation in a Normally Polyinstantiated Multilevel 
Secure Database 

Frank E. Kramer, Steven M. Heffern, Digital Equipment Corporation 

244     Information System Security Engineering: Cornerstone to the Future 
Dr. Donald M. Howe, National Security Agency 

262     Internetwork Security Monitor: An Intrusion-Detection System for Large- 
Scale Networks 

L. T. Heberlein, B Mukherjee, K. N. Levitt, Computer Security Laboratory, 
Division of Computer Science, University of California 

252     Integrity and Assurance of Service Protection in a Large, Multipurpose, 
Critical System 

Howard L. Johnson, Information Intelligence Sciences, Inc. 
Chuck Arvin, Earl Jenkinson. CTA Incorporated 
Captain Bob Pierce. AF Cryptologic Support Center, Hq. AFIC, AFCSClSR 

272     Intrusion and Anomaly Detection: ISOA Update 
J. R. Winkler, J. C. Landry, PRC, Inc. 

282     Issues in the Specification of Secure Composite Systems 
Judith Hemenway. Dan Gambel, Grumman Data Systems 



292     Issues to Consider when using Evaluated Products to Implement Secure 
Mission Systems 

Lieutenant Colonel William R. Price, USAF, 
Headquarters Air Force Space Command (LKXS) 

300     The IT Security Evaluation Manual (ITSEM) 
Y". Klein, Service Central de la Securite des Systemes d'lnformation, Paris, 
France 
E. Roche, Department of Trade and Industry, London, United Kingdom 
F. Taal, Netherlands National Communications Security Agency, The 
Hague, The Netherlands 
M. Van Dulm, Ministry of the Interior, The Hague, The Netherlands 
U. Van Essen, German Information Security Agency, Bonn, Germany 
P. Wolf, Centre D'Electronique de I'Armement, Bruz, France 
J. Yates, Communications-Electronics Security Group, Cheltenham, 
United Kingdom 

310     The Kinetic Protection Device 
Gregory May hew, Richard F razee, Mark Bianco, 

Hughes Aircraft Company Ground Systems Group 

319     Knowledge-Based Inference Control in a Multilevel Secure Database 
Management System 

Bhavani Thuraisingham, The MITRE Corporation 

329     A Lattice Interpretation of the Chinese Wall Policy 
Ravi S. Sandhu, Center for Secure Information Systems & Department of 
Information and Software Systems Engineering, George Mason University 

340     A Local Area Network Security Architecture 
Lisa J. Carnahan, National Institute of Standards and Technology 

350     Mandatory Policy Issues of High Assurance Composite Systems 
Jonathan Fellows, Grumman Data Systems 

359     Mediation and Separation in Contemporary Information Technology Systems 
Marshall D. Abrams, Jody E. Heaney, Michael V. Joyce, 

The MITRE Corporation 

369     Metapolicies II 
Hilary H. Hosmer, Data Security Inc. 

379     A Model for the Measurement of Computer Security Posture 
Lee Sutterfield, Todd Schell, Gregory White, Kent Doster, Don Cuiskelly, 

United States Air Force 

389     A Model of Risk Management in the Development Life Cycle 
Captain Charles R. Pierce, USAF, Air Force Cryptologic Support Center 

399     A Multilevel Secure Database Management System Benchmark 
Linda M. Schlipper, Jarrellann Filsinger, Vinti M. Doshi, 

The MITRE Corporation 

409     The Multipolicy Paradigm 
Hilary H. Hosmer, Data Security Inc. 

423     The Need for a Multilevel Secure (MLS) Trusted User Interface 
Greg Factor, Steve Heffern, Doug Nelson, Jim Studt, Mary Yelton, 

Digital Equipment Corporation 

VI 



429     Network Security Via DNSIX, Integration of DNSIX and CMW Technology 
Howard A. Heller, Harris Corporation 

438     New Dimensions in Data Security 
Karl Heinz Mundt, CE Infosys 

448     A Note on Compartmented Mode: To B2 or not B2? 
Theodore M. P. Lee, Trusted Information Systems, Inc. 

459     Operating System Support for Trusted Applications 
Richard Graubart, The MITRE Corporation 

467     Operational Support of Downgrading in a Multi-Level Secure System 
Doug Nelson, Greg Factor, Jim Studt, Mary Yelton, Steve Heffern, Frank 
Kramer, Digital Equipment Corporation 

473     PM: a Unified Automated Deduction Tool for Verification 
George Fink, Lie Yang, Myla Archer, University of California, Davis 

482     Potential Benefits from Implementing the Clark-Wilson Integrity Model 
Using an Object-Oriented Approach 

Craig A. Schiller, Science Applications International Corporation 

494     Precise Identification of Computer Viruses 
Lawrence E. Bassham III, W. Timothy Polk, 

National Institute of Standards and Technology 

503     Priorities for LAN Security - A Case Study of a Federal Agency's LAN 
Security 

Shu-jen H. Chang, National Institute of Standards and Technology 

513     Protected Groups: An Approach to Integrity and Secrecy in an Object- 
Oriented Database 

James M. Slack, Computer and Information Sciences Department, 
Mankato State University 

Elizabeth A. Unger, Department of Computing and Information Sciences, 
Kansas State University 

523     Provably Weak Cryptographic Systems 
John Higgins, Brigham Young University, Computer Science Department 
Cameron Mashayeki, WordPerfect Corporation 

534     Re-Use of Evaluation Results 
Jonathan D. Smith, Admiral Management Services Ltd. Commercial 
Licensed Evaluation Facility, U.K. 

544     Risk Management of Complex Networks 
Richard Cox, Dr. Michael O'Neill, CTA Incorporated 
Lieutenant Colonel William Price, HQ AFSPACECOMILKXS 

554     Role-Based Access Controls 
David Ferraiolo. Richard Kuhn, 

National Institute of Standards and Technology 

564     An SDNS Platform for Trusted Products 
Ernie Borgoyne, Motorola Inc. 
Ralph G. Puga. Trusted Information Systems, Inc. 

574      SDNS Security Management 
Wayne A. Jansen. National Institute of Standards and Technology 

VII 



584     Security Management: Using the Quality Approach 
Richard W. Owen, Jr., Computer Security Official Mission Operations 
Directorate, Johnson Space Center, NASA 

593     A Security Reference Model for a Distributed Object System and its 
Application 

Vijay Varadharajan, HewlettJJackard Labs 

620     Security Within the DODIIS Reference Model 
Brian W. McKenney, The MITRE Corporation 

631      Separation Machines 
Jon Graff, Amdahl Corporation 

641      Software Forensics: Can We Track Code to its Authors? 
Eugene H. Spafford, Department of Computer Sciences, Purdue University 
Stephen A. Weeber, Lawrence Liuermore National Laboratory 

651      Some More Thoughts on the Buzzword "Security Policy" 
David M. Chizmadia, National Security Agency 

661     Standard Certification - Progression 
Captain Charles R. Pierce, USAF, Air Force Cryptologic Support Center 

670     A Tamper-Resistant Seal for Trusted Distribution and Life-Cycle Integrity 
Assurance 

Mark Bianco, Hughes Aircraft Company 

680     A TCB Subset for Integrity and Role-Based Access Control 
Daniel F. Sterne, Trusted Information Systems, Inc. 

697     A Tool for Covert Storage Channel Analysis of the UNIX Kernel 
David A. Willcox, Steve R. Bunch, Motorola Microcomputer Group 

707     Toward a Model of Security for a Network of Computers 
William H. Murray, Deloitte & Touche 
Patrick Farrell, Department of Computer Science, George Mason University 

717     Towards a Policy-Free Protocol Supporting a Secure X Window System 
Mark Smith, AT&T Bell Laboratories 

728     Use of a CASE Tool to Define the Specifications of a Trusted Guard 
Robert Lazar, The MITRE Corporation 
James H. Gray, III, Computer Sciences Corporation 

Tutorials      [Track D, Room 301 -303] 

738    Tutorial Series on Trusted Systems 
R. Kenneth Bauer, Joel Sachs, Dr. Gary Smith, 
Dr. William Wilson, 

Area Systems, Inc. 
Dr. Charles Abzug, LtCdr Alan Liddle, Royal Navy, 
Howard Looney, 

Information Resources Management College, National 
Defense University 

Vlll 



EXECUTIVE SUMMARIES 
740       Panel:   Addressing U. S. Government Security Requirements for OSI 

Noel A. Nazario, Chair, National Institute of Standards and Technology 
Ted Humphreys, XISEC Consultants Ltd., U.K. 
Thomas C. Bartee, Institute for Defense Analysis 
Dale Walters, Systems and Networks Architecture Division, National 
Institute of Standards and Technology 

744 Point of view: OSE Implementor's Agreements 
Dale Walters, National Institute of Standards and Technology 

746 Point of view: Emerging OSI Security Protocols & Techniques 
Ted Humphreys, XISEC Consultants Ltd., England 

752 Point of view: Security Labels in OSI 
T. C. Bartee, Institute for Defense Analyses 

754     Panel:   Challenges Facing Certification and Accreditation Efforts of the 
Military Services 

Lieutenant Colonel Ron Ross, Chair, USA 
Larry Merritt, AFCSC 
Robert Zomback, CECOM 
John Mildner, NESSEC 

758     Panel:   Domestic Privacy: Roll of Honor and Hall of Shame 
Wayne Madsen, Chair 

761 Panel: Health Issues Program 
Gerald S. Long, Chair, Harrison Avenue Corporation 

762 Point of View: The Benefits of Smart Card Technology in the Health 
Industry 

Peter M. Fallon, Toshiba American Information Systems 

764 Point of View: National Health Card 
B. Bahramian, Beta Management Systems, Inc. 

765 Point of View: The Optical Card as a Portable Medical Record 
Stephen D. Price-Francis, Canon-Canada, Inc. 

766 Point of View: Patient Data Confidentiality in the. Health Care 
Environment 

Marc Schwartz, Summit Medical Services, Inc. 

768     Panel:   Information Technology Security Requirements 
D. Gilbert, Chair, National Institute of Standards and Technology 
N. Lynch, National Institute of Standards and Technology 
Dr. W. Maconochy, National Security Agency 
S. Pitcher, Department Of Commerce 
M. Swanson, National Institute of Standards and Technology 

770     Panel:   International Data Privacy: Roll of Honor and Hall of Shame 
Wayne Madsen, Chair 

774      Panel:   Multilevel Security (MLS) Prototyping and Integration: Lessons 
Learned and DoD Directions 

C. West, Chair, Defense Information Systems 

IX 



775     Workshop:     New Security Paradigm Workshop 
Hilary Hosmer, Chair, Data Security, Inc. 

777 Point of view: Managing Complexity in Secure Networks 
Dr. David Bailey, Galaxy Computer Services 

784 Point of view: A New Paradigm for Trusted Systems 
Dr. Dorothy E. Denning, Georgetown University 

792       Panel:   Perspectives and Progress on International Criteria 
Eugene Troy, Chair, National Institute of Standards and Technology 
Lieutenant Colonel Ron Ross, USA 
D. Ferraiolo, National Institute of Standards and Technology 
Eugene Bacic, Canadian System Security Centre 
Jonathan Wood, Department of Trade and Industry, U.K. 

795     Panel:   Perspectives on MLS System Solution Acquisition - A Debate by the 
Critical Players Involved 

Joel E. Sachs, Chair, Area Systems, Inc. 

799 Panel:   Security Protocols for Open Systems 
Paul A. Lambert, Motorola, Inc. 
David Solo, BBN 
Doug Maughan, National Secuirty Agency 
Russell Housley, Xerox 
Dale Walters, National Institute of Standards and Technology 
Mike White, Booz Allen & Hamilton 

800 Panel:   "TMach" A Symbol of International Harmonization 
Ellen E. Flahavin, Chair, NIST 
Brian Boesch, DARPA 
Dr. Martha Branstad, Trusted Information Systems, Inc. 
C. Ketley, U.K. Government 
Klaus Keus, German Government 

801 Panel:   The Trusted Product Evaluations Program Process Action Team 
S. Nardone, Chair, National Security Agency 

802 Panel:   Virus Attacks and Counterattacks Real-World Experiences 
James P. Litchko, Chair, Trusted Information Systems, Inc. 
Janet Keys, Headquarters NASA 
Louise Mandeville. Miller, Balis & O'Neil, PC. 
George Wellham, MNC Financial, Inc. 



Authors Cross Index 

Abrams,M. D  359 
Abzug,C  738 
Archer, M  473 
Ashby.V  57 
Anderson, E  93 
Anderson, T. E  1 
Archer, M  194 
Arnold, J. L  44 
Arvin, C      66, 252 
Axsmith, C, Esq  120 
Bacic,E  792 
Bahramian, B  764 
Bailey, D  777 
Baker, D.B  44 
Bartee,T.C  752 
Bassham III, L. E  494 
Bauer, R. K  738 
Belvin, F  44 
Bianco, M     310,670 
Bicknell,P  101 
Boesch, B  800 
Borgoyne, E  564 
Bottomly, R.J  44 
Branstad, M  800 
Bunch, S.R  697 
Carnahan, L. J  340 
Chang, S.H  503 
Chizmadia, D. M  651 
Chokhani.S  44 
Cox, R  544 
Cuiskelly,D  379 
de La Beaujardiere, L  126 
Denning, D.E  784 
Doshi,V     57,134,399 
Doster,K  379 
Downs, D. D  44 
Factor, G     423,467 
Fallon,P.M  762 
Farrell,P  707 
Fellows, J  350 
Ferraiolo, D     554, 792 
Filsinger.J      57.399 

Fine.T  204 
Fink,G  473 
Flahavin,E.E    84,800 
Fowler, J  144 
Frazee, R  310 
Frinck, D. A  194 
Gambel.D  282 
Garvey, C  93 
Gibson, V  144 
Gilbert, D  768 
Gligor.V.D  165 
Goldstein, A  93 
Graff, J  631 
Graubart, R  459 
Gray, III, J.H  728 
Gupta, S  165 
Hamilton, D  9 
Heaney.J. E  359 
Heberlein, L. T  262 
Heffern,S     423,467 
Heller, H. A  429 
Hemenway, J  282 
Heffern,S. M  236 
Higgins, J  523 
Hosmer.H     369,409,775 
Housley, R  799 
Howe, D. M  244 
Humphreys, T     746 
Jajodia,S    57,134 
Jansen, W. A  574 
Earl Jenkinson      252 
Howard L. Johnson    252 
Michael V. Joyce     359 
Ketley, C  800 
Keus,K  800 
Keys, J  802 
Klein, Y  300 
Krajewski, Jr., M  76 
Kramer, F. E    236,467 
Kuhn,R  554 
Lambert, P. A  799 
Litchko,J.P  802 

XI 



Authors Cross Index 

Long.G.S    761 
Landry.J.C    272 
Lazar, R    728 
Lee.T.M.P    448 
Levitt, K.N     194,262 
Liddle, A., LtCdr, Royal Navy         738 
Looney.H    738 
Lynch, N    768 
Maconochy. W. V    768 
Madsen,W     758,770 
Mandeville.L    802 
Mashayeki, C    523 
Maughan.D    799 
Mayer, F. L    153 
Mayhew.G    310 
McAuliffe.N    184 
McKenney, B. W    620 
Merritt, L    754 
Mildner, J    754 
Mukherjee, B    262 
Mundt.K.H    438 
Murray, W. H    707 
Nardone,S    801 
Nazario, N. A    740 
Nelson, D    423,467 
Neugent,W     18,203 
Neumann, P. G      28 
Notargiacomo, L      57 
O'Neill, M    544 
Owen,Jr.,R.W    584 
Padilla.S.J     153 
Peele.H.B    Ill 
Pierce, R., Capt, USAF       252,389,661 
Pitcher, S    768 
Polk,W.T    494 
Price, W. R., Lt Col, L'SAF       292, 544 
Price-Francis, S. D    765 
Proctor, N. E      28 
Puga.R.G    564 
E. Roche      300 
Ross, R., LTC, USA       57, 754, 792 

Sachs, J    738,795 
Sandhu.R.S    221,329 
Schell.T     379 
Schiller, C. A     482 
Schlipper, L. M     399 
Schwartz, M     766 
Slack, J.M     513 
Smith, G     738 
Smith, J. D     534 
Smith, M     717 
Solo, D     799 
Spafford.E.H     641 
Sterne, D. F     680 
Studt.J     423,467 
Suri.G.S     221 
Sutterfield, L    66,379 
Swanson, M     768 
Taal, F     300 
Thuraisingham, B     319 
Toth,P.R       84 
Troy,E     792 
Unger,E.A     513 
VanDulm, M    300 
Van Essen, U     300 
Varadharajan, V     593 
Walters, D    744,799 
Weeber,S.A     641 
Wellham,G     802 
West,C     774 
White, G. B., Maj, L'SAF     66,379 
White, M     799 
Willcox,D.A     697 
Wilson, W     738 
Winkler.J.R     272 
Wolf.P     300 
Wood.J     792 
Yang.L     473 
Yates, J     300 
Yelton.M     423,467 
Zomback, R     754 

XII 



A  MULTILEVEL  SECURE DATABASE MANAGEMENT SYSTEM  BENCHMARK* 

Linda M. Schlipper, Jarrellann Filsinger, and Vinti M. Doshi 
The MITRE Corporation, 7525 Colshire Drive, McLean, Virginia  22102 

ABSTRACT 

With the availability of various commercial multilevel secure (MLS) database management systems (DBMSs), 
performance evaluation tools will be necessary to assist users in understanding their performance characteristics. 
Benchmarking is one such performance evaluation tool. A number of benchmarking tools and methodologies have 
been developed for single-level databases, but these do not consider the effects of security-related factors like security 
level distribution, polyinstantiation, etc., in MLS DBMSs. In this paper, we describe an MLS DBMS 
benchmarking methodology that we have developed at MITRE, based on modifying the popular Wisconsin 
benchmarking methodology for single-level DBMSs. Currently the MLS DBMS methodology is limited to 
examining performance in a single user context, but work is ongoing to enhance it for the multiuser environment. 

1.   INTRODUCTION 

Now that commercial multilevel secure (MLS) database management systems (DBMSs) are beginning to appear, 
potential users of such systems are looking for tools to evaluate their capabilities and performance for use in 
application environments. Performance, always an issue for DBMSs, becomes even more so for MLS DBMSs 
because of potential overhead associated with multilevel processing and various security options. Performance 
evaluation tools are needed to aid in assessing existing MLS DBMS technology and help identify areas where 
improvement is needed. Only some very preliminary work has been done in characterizing the performance aspects 
of MLS DBMSs [5,7]. A good performance tool to evaluate MLS DBMSs still needs to be developed. 

Two types of performance tools being used for single-level (conventional) databases are algebraic models and bench- 
marks. Algebraic models are a type of analytic model that can also be used as the basis for simulations. These 
models can be used to evaluate the performance of a proposed DBMS architecture before the system is actually 
prototyped, whereas benchmarks are experimental evaluation tools that can be used for performance evaluation after a 
system has been built. The model suggested by Mukkamala and Jajodia is an example of an algebraic model of 
MLS DBMS performance. It takes into account user behavior, system behavior and database characteristics to 
develop a performance model. (This model, however, focuses on a very limited aspect of performance: the effect of 
decomposition of multilevel relations on performance of the Sea View architecture [2].) 

With the availability of commercial MLS DBMSs, systematic benchmarking and experimental validation of perfor- 
mance models is feasible. Benchmarking provides empirical measurements for comparing performance of different 
systems, developing real-world performance insights, or evaluating the accuracy of analytical performance evaluation 
tools. A systematic benchmark can also be used as a tool to evaluate new algorithms and query optimizers. 
Although there are several benchmark methodologies available to aid in the development and analysis of conven- 
tional DBMSs, they are not adequate for use with MLS systems because the effects of such security-related features 
as the number of security levels of data, polyinstantiation, or auditing options are not examined. 

Thus far, benchmarking of MLS DBMSs has been performed only on an ad-hoc basis; for example, see [5]. A good 
benchmarking technique for MLS DBMSs is still needed to evaluate the effect on performance of security-unique 
factors such as the security level distribution (i.e., the number of security levels and compartments and the 
proportion of data associated with each) and user session level distribution. It is also important to determine the 
sensitivity of different MLS DBMS architectures to these and other security-related factors like polyinstantiation and 
auditing. At MITRE, we are developing a benchmarking methodology which can be used to give a general measure 
of the performance of various MLS DBMSs and can be further tailored to measure performance for specific 
application environments. 

In this paper, we present our initial results in developing a generalized benchmarking methodology for performance 
analysis of MLS DBMSs in a single-user environment. The approach is to modify the Wisconsin benchmark [3], 
one of the most widely accepted benchmarks for conventional DBMSs. This benchmark is of particular interest not 
only because of its popularity, but also because of its use of a synthetic database. A major consideration in any 

* This work has been done under MITRE core funding 

399 



benchmark experiment is the data used for testing. Although real data gives the most accurate results when eval- 
uating a system for a known database application, it is often difficult to get, especially in the case of MLS DBMSs, 
which are designed for classified data. A synthetic database gives the opportunity to control security variables like 
security level distribution to test the effect of access mediation on performance. A synthetic database is also easy to 
tailor to mimic operational characteristics of a particular real-world database application, so that alternative products 
can be considered for a specific application environment. 

The remainder of this paper is organized as follows. Section 2 presents an overview of security-related performance 
issues in MLS DBMSs. Section 3 describes the MLS benchmarking methodology and tools which have been 
developed. Finally, section 4 summarizes our results to date and discusses continuing work, including testing the 
methodology with currently available MLS DBMSs and enhancing it for the multiuser environment. 

2.     SECURITY-RELATED   PERFORMANCE   FACTORS 

In this section we identify security-related characteristics that may affect the performance of an MLS DBMS. 
Although specific DBMS implementations will vary, some general observations can be made about the influence of 
these security-related characteristics on performance of various DBMS architectures. Before discussing the security- 
related performance factors, we briefly review the different basic types of architectures used in trusted DBMSs. 

2J Secure DBMS Architectures 
The major architectures being used for trusted DBMS products [5,6] are the Trusted Computing Base (TCB) Subset, 
Trusted Subject, and Integrity Lock architectures. They differ in whether security responsibilities are allocated to the 
operating system (OS), the DBMS, or an intermediary between the user and the DBMS. 

TCB Subset Architecture - In the TCB Subset architecture, a multilevel database is decomposed into single-level 
parts which are stored in separate OS objects. As shown in Figure 1, the MLS DBMS does not enforce the security 
policy, but relies on the MAC protections provided by the underlying trusted OS. 

High User Low User 

I t 
High DBMS 

Process 
Low DBMS 

Process 

Trusted Operating System 

High 
Database 
File 

Low 
Database 
File 

Figure 1. TCB Subset Architecture 

Trusted Subject Architecture - In the Trusted Subject architecture, a security kernel in the DBMS handles both man- 
datory access control (MAC) and discretionary access control (DAC). The DBMS software runs on a trusted OS, and 
the multilevel database as a whole is stored in OS objects. But the DBMS associates security labels with DBMS 
objects and uses these labels as the basis for MAC. Figure 2 gives an overview of the trusted subject architecture. 

400 



User 
Application 

I 
Trusted Subject DBMS 

Trusted Operating System 

Database 
High File 

Figure 2. Trusted Subject Architecture 

Integrity Lock Architecture - As shown in Figure 3, the Integrity Lock architecture uses a trusted filter to control 
access to data stored in an untrusted DBMS. The filter mediates all access between the users and the database. The 
fdter is responsible for labeling data and restricting access to the data based on the user's security level. The labels 
are protected from modification while in the untrusted DBMS by a cryptographic checksum computed over the data 
and the label, which is also encrypted. On insert, the trusted filter computes the checksum and stores it with the 
data. On retrieval, the filter decrypts the security label and recomputes the checksum to confirm the data's associated 
security level, then determines whether the user is cleared to view the data before passing it on to the user's process. 

Single-level 
User 

Front End 

X 
Single-level 

User 
Front End z 

Untrusted Front End 

Trusted Filter 

Trusted Operating System 

T 
Untrusted 

Data. Manager 

Figure 3. Integrity Lock Architecture 

401 



11 Security-related  Factors  Affecting Performance 

In this section we discuss security-related factors and their possible effects on performance. These factors include 
access mediation, security level distribution, concurrency control, session level distribution, poly instantiation, 
auditing, security constraints, and the Trusted Computer System Evaluation Criteria (TCSEC) [8] evaluation class. 
As in any complex system, the various factors are interrelated, and a system's overall performance reflects their inter- 
action. Some tentative observations can be made about the performance implications of various security-related 
issues, but actual performance testing of MLS DBMSs needs to be done before drawing final conclusions. 

Access Mediation - MLS DBMSs enforce two types of access control: MAC and DAC. To enforce MAC, 
many labels (e.g., file, relation, and multiple tuple labels) may need to be checked to satisfy a database access 
request. The TCB overhead associated with MAC checks for database access requests has obvious potential impact 
on the retrieval or update performance of an MLS DBMS, depending on its architecture. Object granularity can also 
affect the overhead of associated MAC checks to varying degrees depending on the architecture used. 

Performance effects of DAC may depend upon the objects of DAC enforcement (e.g., relations vs. views). At lower 
TCSEC classes, DAC is not fundamentally different than the type of access control implemented in conventional 
DBMSs, and its performance effects are likely to be similar. However, DAC requirements in MLS DBMSs at class 
B2 and above (or future attempts to provide high assurance DAC) add to the complexity of the system and may have 
an effect on performance. 

Security Level Distribution - The distribution of the classification levels among the data, in combination 
with the implementation architecture and the MAC object granularity, may have a significant impact on the 
performance of the MLS DBMS. Some potential effects of classification level distribution on the performance of 
various MLS DBMS architectures are as follows. 

TCB Subset Architecture: In the TCB subset approach, the MLS DBMS relies on the MAC policy enforced by the 
trusted OS. To take advantage of the OS's MAC, the DBMS places data objects in OS data objects (e.g., files) with 
the same security level. When information is retrieved from the database, all files dominated by the user's session 
level may need to be accessed. If multiple security levels are being accessed, at least that many data pages must be 
read. Index entries may also be partitioned into multiple sub-indexes by security level. If a user is cleared to view 
all the data in the relation, then all of the sub-indexes must be examined, increasing retrieval time. [S] has suggested 
that with indexes partitioned by security level performance degrades roughly in proportion to the number of security 
levels. However, with few security levels or with most users operating at the lower levels, the performance impact 
of this approach would be less significant. 

Trusted Subject Architecture: In the trusted subject architecture, the MLS DBMS performs access mediation and 
operates across different OS sensitivity levels. As a result, the database can be placed in one OS file. (Some trusted 
subject architectures, however, may still partition data among single-level internal data structures [9].) Although the 
trusted subject architecture may eliminate the need to separate data and indexes by security level, it increases the size 
and complexity of the TCB. Implementation decisions may be made to balance the requirements for a small TCB 
with performance features. Benchmarking on one prototype based on this architecture found performance impact 
when the security levels of tuples were different from those of the containing relations [5]. 

Integrity Lock Architecture: In the integrity lock architecture, a trusted filter generates cryptographic checksums for 
each tuple and its sensitivity label. Since the checksums must be recomputed for each tuple upon retrieval or update; 
performance is affected by the number of tuples returned to the trusted filter. The degree of impact depends on the 
speed of the checksum algorithm. However, since the data is stored in one system-high object such as an OS file or 
a backend DBMS server, all tuples that satisfy qualification criteria are returned to the trusted filter for access 
mediation. Thus, the time to complete a query may be independent of the user's session level. On the other hand, 
relative performance (the amount of time required per tuple returned) can vary widely based on security level 
distribution within a relation, since the number of tuples that must be examined and discarded depends on the 
proportion of data in the relation that is marked within the user's range. 

Concurrency Control - Isolating users at low security levels from the activity of users at higher security levels 
is a problem that affects the mechanisms used for concurrency control and transaction management. For example, if 
locking methods are used, high users cannot be allowed to take locks that are detectable by low users. To avoid a 
covert channel, if a conflict arises, high users' requests must be delayed or aborted and low users' locks honored. 
Starvation is likely to occur, when low users frequently take write locks on low data and high users' read requests are 

402 



repeatedly aborted. Starvation can cause severe performance problems for high users, if there is contention for 
frequently used data. The performance of an MLS DBMS may be affected depending on the algorithm being used for 
concurrency control, the workload, the distribution of data, and the locking granularity. 

Session Level Distribution - In the same sense that the security level distribution of the stored data can have 
an impact on performance, so can distribution of the session levels of the users accessing the data in a multiuser 
environment. With multiple users, session level distribution can be expected to affect performance through 
concurrency control, polyinstantiation, etc. These issues have yet to be thoroughly explored, since our initial work 
pertains only to the single-user case. With a single user, the performance effects of session level would be limited to 
those involving its relationship with the security level distribution of data being accessed, as noted previously. 

Polyinstantiation - Polyinstantiation [2] allows a relation to contain multiple rows with the same primary key; 
the multiple instances are distinguished by their different security levels. For example, if a user whose session level 
is low attempts to insert a tuple with the same primary key as an existing high tuple, the low tuple is inserted 
nevertheless, with potentially conflicting data. The performance for inserts, updates, and deletes could be impacted 
by polyinstantiation. Retrievals might also incur additional overhead, since multiple instances of what would 
otherwise be one tuple may need to be accessed. Also, databases frequently updated by users at different session 
levels could grow larger, introducing performance considerations related to the size of the database. The security 
level distribution, and the update workload distribution, will affect the degree to which polyinstantiation and its 
attendant performance effects will occur in a particular environment. 

Auditing - Auditing of security-related activities is required in MLS DBMSs. Security-relevant events include 
logins, granting and revoking of access permissions to relations, etc. The level at which auditing needs to be done is 
variable. The performance effects of the optional auditing features should be carefully examined, since their use may 
be a significant factor in the performance of data management functions. Audit queue management is another factor. 
An audit queue is a buffer for holding audit records until they are written to the audit log. If the queue is too small, 
performance can degrade while records wait to get into the queue; if it is too large, memory resources are wasted. 

Additional Security Constraints - Context-based access controls, association constraints, and aggregation 
constraints are additional types of security constraints that may be addressed in future MLS DBMSs. Context-based 
access control restricts access to data based on whether it is viewed together with relevant context information. 
Association constraints classify the relationships between entities in the database. Finally, aggregation constraints 
specify that some aggregates of data have a higher sensitivity level than the individual components. These additional 
security constraints are outside the scope of current products (although TRUDATA [1] does have a mechanism to 
statically label certain predefined joins between two relations). However, researchers in this area are looking at rule- 
based (or knowledge-based) systems to implement these constraints. Overhead associated with this type of software 
as well as the number of constraints may be expected to impact the performance of the associated DBMS. 

National Computer Security Center (NCSC) Evaluation Class - At higher NCSC TCSEC evaluation 
classes, not only are additional security mechanisms required but also the degree of assurance of the system's 
trustworthiness increases. To achieve higher degrees of assurance in the security of a system, the size of the TCB 
must be minimized, and the complexity of the security-relevant portions of a system's design must be reduced. With 
the introduction of higher assurance levels into an MLS DBMS comes a series of trade-offs the DBMS vendor must 
make with respect to performance and functionality. 

3.     MLS  DBMS  BENCHMARKING  METHODOLOGY 

The methodology that we developed for MLS DBMSs is a modification of the Wisconsin benchmark [3, 4], one of 
the most widely used benchmarks, and one which has been effective in uncovering performance and implementation 
flaws in the original relational products. The Wisconsin benchmark was developed as an application-independent 
benchmark, and consists of algorithms and a schema design for generating synthetic databases, a comprehensive set 
of queries for testing relational functions, and a methodology for systematically conducting single-user benchmarks. 
It does not yet include tests for concurrency control and recovery management. However, because of its use of a 
synthetic database and easy-to-understand structure of relations and queries, the Wisconsin benchmark provided a good 
starting point for development of an MLS DBMS benchmark. A synthetic database is of special importance for an 
MLS DBMS benchmark, because multilevel classified data is neither easily available nor easy to operate with. 
Also, a synthetic database permits systematic benchmarking with update and retrieval queries with specific selectivity 
factors and modeling of a variety of sensitivity level distributions, potentially a major performance issue in MLS 
DBMSs. Random generators can be used to obtain uniformly distributed attribute values for varying relation sizes. 

403 



This section describes the components of our MLS benchmarking methodology: the test database generator, which 
produces test databases modeled on those used in the Wisconsin benchmark; a generic query suite, which addresses 
relational functional coverage; and the query execution program, which provides the benchmark testing environment. 

3.1     MLS  DBMS Benchmark  natahase 

We have developed a multilevel relation generator to generate the synthetic MLS DBMS benchmark databases. The 
relation generator was developed by modifying the algorithm for generation of Wisconsin relations [4], Data values 
for each relation in an MLS database are generated using a C program that computes random integer values and 
corresponding string values to populate an MLS DBMS benchmark relation. The program is parameterized so that 
the number of tuples, security label formats, and security label distributions can be specified. 

The relation generator is used to generate a database consisting multiple relations with similar schemas, which 
permits construction of join queries as well as other queries based on different selectivity factors. Relations with 
different sizes are generated to study the effect of relation size on performance using single-relation queries. The 
cardinality of the relations can be scaled relative to the computer platform's main memory capacity to reduce 
buffering effects upon performance of DBMS functions. [4] recommends that the largest benchmark relation be at 
least five times the size of the available main memory buffer space in bytes. Duplicate relations of the same 
cardinality can be added to this basic design to minimize the effect of buffering between the queries sequentially 
executed in a benchmark test. (But this may not always be desirable, since buffering and repeated execution of the 
same query may be a realistic reflection of some application environments.) The basic design can be tailored for 
specific application environments. 

The output file of the relation generator is a flat, ASCII character file in a tab-delimited format that is suitable for 
loading with any DBMS bulk load utility. This approach supports development of database load and unload tests, a 
feature of many DBMS assessments. More importantly, the use of a bulk load approach facilitates use of the 
software with different MLS DBMSs, since the program does not interface directly with a DBMS. Our experience 
with Bl-targeted MLS DBMSs indicates that bulk load utilities can be expected to be available with these products. 
Although ordinarily the security label for data entered under the control of an MLS DBMS is equal to the session 
level of the process writing the data, the bulk load utilities of Bl-targeted MLS DBMSs permit a security label field 
to be included in the load file for multilevel loading of data. MLS DBMSs targeted at evaluation classes above B1 
may not provide this multilevel load capability. However, the mechanisms for specific features such as bulk loading 
can only be speculated upon since no commercial B2-or-above MLS DBMSs are presently available. At least single- 
level bulk load utilities, though, will almost certainly be provided, since customers must be able to move data from 
existing DBMSs into the new systems. Only minor changes would be needed to adapt the relation generator 
program for use with a single-level load utility. It would simply need to write the generated data into multiple 
ASCII files destined for different security levels rather than into a single multilevel file. 

Some of the features of the benchmark database design are as follows: 

Relation Size - The benchmark database consists of a set of relations differing only in their cardinality (number of 
tuples). The smallest and largest relations should differ in size by a factor of 10, although their specific sizes can be 
scaled as we have noted previously. The example test database that we created for our initial benchmark consisted of 
five relations ranging from 1000 to 10,000 tuples. 

Attributes - We added a security label attribute, secLabel, to the basic Wisconsin relation schema [4], to allow 
labeling of tuples within the test relations. In order to accommodate different label formats and different security 
level distributions, the format and distribution of data values for the secLabel attribute are specified by the user at the 
time a relation is generated. The other attributes contain 13 integer-valued attributes and three 52-byte string 
attributes which are the same as those defined for the Wisconsin relation schema. The two attributes, unique! and 
unique!, contain values in the range 0 to MAXTUPLES-1 where MAXTUPLES is the cardinality of the relation. 
One is random, while the other sequentially numbers the relation's tuples. The two, four, ten, and twenty attributes 
repeat in a cyclic pattern, but the values are randomly distributed in the relation by computing the appropriate 
modulus (mod) of unique2. The onePercent through fiftyPercent attributes simplify the scaling of queries according 
to certain selectivity factors. The string attributes, stringul and stringu2, are string analogs of unique! and unique2. 

Labels - The additional attribute, secLabel, is used to store tuple-level labels and to implement various distributions 
of security label values.  Tuple-level labeling was selected because this is the MAC object granularity currently 

404 



supported by most MLS DBMS products. An allowable range of classification levels is associated with each 
relation in the database, and a security label attribute is associated with data in each tuple in a relation. The range 
and distribution of security levels may be changed in order to model different operational scenarios. 

Storage Organizations - One of the key factors affecting the speed of a DBMS's retrieval operations is the storage 
organization of the relation. Three types of storage structures are used in the multilevel database: sequential 
organization, clustered index and nonclustered index. Although others exist, these were selected because they are 
supported by most relational DBMSs. In sequential organization, tuples are stored in the order they are entered. The 
time required to search a sequential file is long since all the records must be scanned. Retrieval time with a 
sequential organization is simulated in our benchmark by using non-indexed fields in the query selection criteria. 

In a clustered index, the index determines the physical placement of data within a fde. Typically, tuples are stored in 
sorted order based on the value domain of the clustering attribute or attributes. Although any index can allow quicker 
data retrieval by eliminating the need to scan the entire relation (provided index attributes have a high selectivity), 
clustered indexes provide one of the most efficient access methods for queries that access a range of key values. This 
is because the data resides on a smaller number of pages, requiring fewer physical page fetches by the DBMS to 
retrieve the qualifying records. In an MLS DBMS, however, the efficiency of a clustered index may be affected if 
tuples are partitioned by security level. For example, a tuple with a cluster key value of "10" may not follow one 
with a value of "9" if the tuples have different security labels. For the multilevel benchmark database, a clustered 
index is defined for each relation using the attribute uniquel which contains a unique value for each tuple and whose 
values are generated in sort order for the load file. The security label attribute (secLabel) is also included as part of 
the index key. This is necessary in order to support polyinstantiation since the same "apparent" primary key may 
exist in tuples at different security levels. Since clustered indexes determine the physical storage location of tuples 
in a relation, only one clustered index can be defined for each relation in a database. 

In a nonclustered index, the index is used to locate a pointer to a tuple or tuples containing the index key value. 
Since most DBMSs do not restrict the number of nonclustered indexes that can be defined for each relation, this type 
of file organization can be used for both secondary indexes and primary indexes. In the MLS database, nonclustered 
indexes are defined on the attributes unique!, onePercent, tenPercent, and stringul. 

3.2     Ml S   DBMS   Benchmark  Test  Query  Suite 

We modified the test query suite of the Wisconsin benchmark to include queries that measure the effect of various 
security-related factors on the performance of the MLS DBMS. For completeness, we added sort queries, which are 
not included in the original Wisconsin query suite. The resulting test query suite contains selection queries, 
projection queries, join queries, aggregation queries, sort queries, and update queries. A brief overview follows. 

Selection Queries - The speed at which a DBMS can process a selection query depends on the size of the relation, 
the storage organization of the relation, the selectivity of the selection criteria, the output mode of the query, the 
hardware speed, and the quality of the software. For a single-level relation, selectivity of a selection operation, a, is 
the proportion of tuples that participate in the result of that operation. For an MLS DBMS, defining selectivity is 
difficult. In a multilevel database, a relation, R, is conceptually fragmented as R],R2,.... Rn according to the 
distribution of classification levels of the tuples in the relation. From a user's perspective, R is restricted to the set 
of tuples Ru a user is authorized to access with clearance cu and defined by 

Ru = {Ri G R I cl(/?j) < cu), where cl(/?/) is the highest classification level of data in /?/ 

Since Ru<^R, the number of tuples returned by a selection operation may change with the classification level at 
which the query is executed. Therefore, selectivity is dependent on the session level. Performance analysis should 
examine both the case in which the number of tuples returned varies with the session level and the case where the 
number of tuples is held constant. Controlling selectivity is necessary to study the latter case. 

Projection Queries - Although a projection may or may not contain duplicates, a projection query specifies 
elimination of duplicates. Most of the processing time for projection queries is incurred in eliminating duplicate 
tuples, usually by sorting. For a multilevel relation, it is difficult to determine the projection factor precisely 
because the correlation between projected attributes and their security levels may vary. Some MLS DBMSs will 
consider the security level to be a part of the projected attributes, even if it is not explicitly requested. Thus, the 

405 



cardinality of a multilevel projection may be larger than in a single-level database because an attribute value of "1" in 
an Unclassified tuple will not be considered a duplicate of an attribute value "1" in a Confidential tuple. 

Join Queries - The join queries in the Wisconsin benchmark test how efficiently the system makes use of available 
indices and how query complexity affects the relative performance of the DBMS. In the MLS version of the query 
suite, the selectivity factor for join queries was reduced from 10 percent to one percent. For a 10,000 tuple relation, 
10 percent selectivity generates a 1,000 tuple result, larger than would be desired by a user in an ad hoc environment. 
The definition of selectivity for joins of multilevel relations is the same as for multilevel selections. 

Aggregate Queries - The aggregate queries for the multilevel benchmark are the same as in the Wisconsin 
benchmark. The queries use either a secondary index or no indexes. Indexed and non-indexed versions of an 
aggregate query are included to determine whether the query optimizers use an index to reduce the execution time. 

Sort Queries - The Wisconsin benchmark query suite does not include any sort queries, but for completeness we 
included them in the MLS benchmark. They measure the ability of a DBMS to sort on alphanumeric or numeric 
attribute values. We have two versions of queries: one in which an indexed field is used to define the sort order and 
one which sorts on a non-indexed field. Although the second version more accurately reflects a DBMS's sorting 
capabilities, the versions using an indexed sort field are included for comparisons of index efficiency across MLS 
DBMSs with different security level distributions. 

Update Queries - Update queries evaluate the overhead involved in updating each type of index when inserting, 
updating, or deleting a tuple. The update queries used in the Wisconsin benchmark address only single-tuple updates 
and are sequenced so that the database is restored to its initial state when all the tests are completed. Because the 
MLS update queries reflect the same limitations, they are probably the weakest part of the MLS benchmark. Not 
enough updates are performed to cause a significant reorganization of data pages or index nodes (especially for B-trees 
that are already several levels deep). A more realistic evaluation of maintenance overhead requires a multiuser 
environment, where the effects of concurrency control and deadlocks can also be measured. Additionally, the effect of 
polyinstantiation probably cannot be detected at the granularity of single-tuple updates, especially in a single-user 
test environment. Therefore, multiple-tuple update queries will be added when we develop a multiuser query suite. 

2J Query Execution Tool 
Benchmarking a database involves the use of a mechanism to submit queries to the target database and take timing 
measurements. The tool must perform this task reliably and consistently to get dependable results. There are two 
techniques for executing a benchmark. One technique uses ASCII script files containing the benchmark workload 
that are executed through an interactive SQL interface. The MLS DBMS Benchmark uses the second technique, 
which involves the use of embedded host language interface program calls within a programming language. Both 
techniques are valid; however, the second technique allows for more accurate timing measurements. We developed 
the Job Script Execution tool using the C programming language to run a series of benchmark tests against DBMSs 
over multiple platforms. A simple ASCII shell script might have been faster to develop, but not as flexible. The 
timing of a query should be performed as close as possible to the DBMS kernel interface in order to get the most 
accurate measurement. An ASCII script cannot capture the appropriate granularity of timing data from the DBMS. 
For instance, a shell script is unable to capture the timing detail for the first record returned from the database ("time- 
to-first"). A shell script running at the interactive SQL interface also takes additional resource overhead while 
executing the queries. On the other hand, shell scripts are very good for initially testing the query suite for errors. 
The tool we developed to execute the query script workload and analyze the timing output is described below. 

Job Script Execution Program Description - The Job Script Execution tool serves two basic purposes: (1) to submit 
the job script workload to the target DBMS and (2) to set the OS clock and record the timing data for each query 
submitted to the DBMS. The program takes two input parameters: the query script file name and the name of the 
file to be used for the query results. The program prompts the user for the session level (classification and 
compartments) at which the benchmark test will be run. If the logon is successful, benchmark testing begins. Each 
query defined in the job script is submitted to the DBMS. The time is recorded before the query is submitted, after 
the first record is returned and after the last record is returned. When the last query in the query script is executed, a 
DBMS logoff occurs and control returns to the main unit 

The entire job script is submitted to the DBMS for a total of three times to obtain an average of the timing results. 
With each successive run of the Job Script Executor program, a DBMS logon and subsequent logoff are performed. 
The logon and logoff sequence permits each run of the query suite to find the DBMS in a consistent initial state. 

406 



The host machine is dedicated to running the benchmark with no other users active during testing, so that other 
activity on the host machine is not a factor in the timing results. 

M Security-Related  Experiments 

In this section, we describe the experiments that should be run using the benchmark database, test query suite, and 
query execution tool to examine the impact of security-related features on the performance of an MLS DBMS. 
Specifically, these experiments are designed to address the issues of security level distribution within a database, user 
session levels, and auditing. Not all of the security-related issues identified in section 2 have yet been at addressed. 
Since the commercially available MLS DBMSs are targeted at the Bl level, the effect of the NCSC evaluation level 
cannot be assessed. Similarly, neither high assurance DAC nor additional security constraints described earlier are 
relevant with the B1 MLS DBMSs currently available. Finally, the current MLS DBMS benchmark is a single-user 
test, hence performance impact of concurrency control, poly instantiation, and session level mix cannot be measured 
until a multiuser benchmark is developed. The experiments discussed below are those that can be carried out using 
the initial version of the MLS DBMS benchmark tools. 

Security Level Distribution Experiments - This portion of the benchmark methodology looks at the MAC mech- 
anisms of an MLS DBMS by examining the effect of security level distribution on performance. By security level 
distribution, we mean the number of security levels of data stored in the DBMS and the percentage of data stored at 
each level. We approach this issue by holding the query workload constant and running a complete set of benchmark 
experiments over different versions of the multilevel database, with differing security level distributions. The tests 
are run with the MLS DBMS's security feature options, such as polyinstantiation or auditing options, either turned 
off or set at their minimum level. 

We plan to use three database configurations for the generic multilevel benchmark with Bl-targeted MLS DBMSs. 
The first configuration contains data at only one level. That is, all tuples in each relation are labeled at the DBMS's 
lowest security level, Level 1 (e.g., "Unclassified). The second version of the database has two levels of data in each 
relation, with eighty percent of the tuples labeled at Level 2 (e.g., "Confidential") and twenty percent labeled at Level 
3 (or "Secret"). This distribution roughly models the operational environments for which Bl systems are 
appropriate. The third version of the database adds categories, which represent non-hierarchical classification levels, 
to model a compartmented-mode environment. Forty percent of the tuples in each relation are labeled at Level 4 
(e.g., "Top Secret"); twenty percent at Level 4, Category A; twenty percent at Level 4, Category B; and twenty 
percent at Level 4, Categories A and B. In each experiment, the session level is database high, the highest security 
level of the data within the database (e.g., Level 4, Categories A and B, for the third version of the database). 

This multi-database version approach increases the length of time to conduct benchmark experiments since databases 
must be dropped and rebuilt each time experiments are run using a different security level distribution. The 
alternative, though, is to have duplicate copies of each relation, with differing security level distributions. For 
example, there might be three 1,000-tuple relations: one with all tuples at one level, another with an eighty percent/ 
twenty percent security label distribution; and the third with the category distribution described above. Aside 
requiring more storage space, it is not clear that the single database approach provides an equivalent environment. 
For example, the metadata may be affected by the presence of additional security levels, as may be the actual storage 
of data values. Other side effects may also be present that could be difficult to detect or control. 

User Session Level Experiments - The second type of experiment looks at the effect of the session level at which 
queries are run. Analysis of timing measurements will show how MLS DBMS performance differs for users running 
at different security levels. Therefore, in addition to executing a complete set of the basic workload for each 
multilevel version of the database, a modified workload is executed at different user session levels against each 
version of the database. The selection criteria are modified, if necessary, so that each query is guaranteed to return the 
same number of rows, regardless of the user's session level. Our definition of multilevel selectivity does not require 
this, but the total time required to complete a query also depends on the number of rows returned. Therefore, 
meaningful comparisons of response times across multiple user session levels cannot be made unless the size 
(cardinality) of the result rows is kept constant. The attribute unique2 is used for the selection criteria because the 
security label value is correlated with the value of unique! when the test data is generated. For the databases 
described above, the workload is run at seven different session levels against each version of the database: Level 1; 
Level 2; Level 3; Level 4; Level 4, Category A; Level 4, Category B; and Level 4, Categories A and B 

Auditing Experiments - The last type of experiment examines the effect of auditing. Overhead from auditing always 
has a detrimental impact on a DBMS's performance. In an MLS DBMS, foregoing the use of auditing will not be an 

407 



installation option. However, all systems will have a minimal set of audit operations that are required and another set 
of audit events whose use is optional. The experiments described above are all conducted with minimal auditing; the 
identification of the minimal set of audit events is included in the benchmark documentation. Specific testing to 
determine the impact of additional optional audit parameters is conducted using only one version of the multilevel 
database. Although experience with using this benchmark may indicate otherwise, it is not felt that the security level 
distribution of the data within the database is a factor in audit overhead. Therefore, audit experiments may be run 
using any one of the three multilevel versions. User session levels, though, may have an impact, so each series of 
tests using a specific set of audit parameters is run using at least two session levels: benchmark low (e.g.. Level 1) 
and benchmark high (e.g., Level 4, Categories A and B). 

4.     CONCLUSIONS 

This paper has presented the results of our initial work towards developing a methodology for benchmarking MLS 
DBMSs. We have categorized a set of security-related features of MLS DBMSs that may impact their performance. 
Benchmarking components, including the multilevel test database, the query suite, and a single-user test execution 
program, have been defined and implemented. Finally, we have described a series of benchmark experiments to 
assess the performance impact of MAC and auditing on Bl-targeted MLS DBMSs. 

When the project began, this effort was perceived as only requiring relatively straightforward modifications to the 
Wisconsin benchmark in order to adapt it to a MLS DBMS context. However, a number of unique issues associated 
with the multilevel properties of relational databases, such as the meaning of selectivity across multiple 
classification levels, have already been identified. There appears to be no clear consensus regarding the MLS 
extensions to the relational data model, so variations among MLS DBMS implementations can be expected from 
different vendors. Therefore, actual benchmarking experience using a variety of COTS MLS DBMSs will be 
necessary before an MLS DBMS benchmarking methodology can be completed. 

At MITRE, we are working to extend the benchmark to support multiuser performance testing in order to assess the 
impact of concurrency control algorithms, polyinstantiation, and session level mixes. Meanwhile, we plan to test 
the single-user benchmark against some of the MLS DBMSs currently available. Advanced security constraints, 
such as context-based access control, association constraints, aggregation constraints, and enhanced DAC 
mechanisms, when they appear, will become targets of additional investigation. 

REFERENCES 

[1] TRUDATA Model 3BBL Trusted Facility Manual, Release 2.0 Revised 27 June 1990, Atlantic Research 
Corporation, Hanover, MD. 

[2] Denning, D. E., Lunt, T. F., Schell, R. R., Heckman, M., and Shockley, W. R., "A Multilevel Relational 
Data Model," Proceedings of the 1987 IEEE Symposium on Security and Privacy, IEEE Computer Society Press, 
1987. 

[3] DeWitt, D. J., Bitton, D., C. Turbyfill, 1983, "Benchmarking Database Systems: A Systematic 
Approach," Computer Sciences Department, University of Wisconsin, Madison, WI. 

[4] DeWitt, D. J., 1991, "The Wisconsin Benchmark: Past, Present, and Future," The Benchmark Handbook, 
edited by J. Gray, Morgan Kaufmann Publishers, Inc., San Mateo, CA. 

[5] Graubart, R., "A Comparison of Three Secure DBMS Architectures," Proceedings of the 3rd IFIP WG 11.3 
Workshop on Database Security, September 1989, Monterey, CA. 

[6] Hinke, T., "DBMS Trusted Computing Base Taxonomy," Proceedings of the 3rd IFIP WG 11.3 Workshop 
on Database Security, September 1989, Monterey, CA. 

[7] Jajodia, S., Mukkamala, R, "Effects of SeaView Decomposition of Multilevel Relations on Database 
Performance," Proceedings of the 5th IFIP WG 11.3 Workshop on Database Security, Shepherdstown, WV. 

[8] Department of Defense (DOD), 1985, Trusted Computer System Evaluation Criteria, DOD 5200.28-STD. 

[9] Varadarajan, R., October 1991, "An Overview of Informix-Online/Secure," Proceedings of the 14th 
National Computer Security Conference, Washington, D.C., pp. 701-703. 

408 



THE MULTIPOLICY PARADIGM 

Hilary H. Hosmer 
Data Security Inc. 
58 Wilson Road 

Bedford, MA 01730 

ABSTRACT 

This paper identifies some shortcomings in the TCSEC/TNI/TDI paradigm for multilevel secure (MLS) 
systems and summarizes requirements for an alternate paradigm. It describes the Muttipolicy Paradigm, 
suggests shifts in thinking about MLS systems, and raises important muttipolicy issues: policy conflict 
resolution, adding user security policies to commercial off-the-shelf (COTS) products, evaluating and 
certifying multiple policy systems, and passing sensitive data across policy boundaries. 

INTRODUCTION 

OVERVIEW 

This paper consolidates and extends the results of our research into muttipolicy systems12 3 4 "•performed 
over the last two years under Air Force Electronic Systems Division sponsorship. The Muttipolicy 
Paradigm permits a multilevel secure (MLS) system to enforce multiple, sometimes contradictory, 
security policies. Metapolicies, policies about policies, coordinate the enforcement of the multiple 
security policies  Policy domain codes on data indicate which security policies to enforce on the data, 
and multiple label segments supply the attributes needed for each policy. 

The Muttipolicy Paradigm permits natural modelling of the muttipolicy real world. It permits possibly 
inconsistent security policies, such as confidentiality and integrity, to operate together. It may provide a 
vehicle for users to add their own security policies to a system without disrupting or invalidating existing 
evaluated policies. It may ease policy integration problems by preserving the original classification of 
data when data is passed across policy boundaries. Finally, if implemented in high-speed parallel 
processing architecture, it may improve trusted system performance. 

Commercial applications include medical, financial, reservation, library, investigative and other systems 
that cross policy domains. Military applications include multiservice logistics, the multiservice Strategic 
Defense Initiative and Command, Control, and Communication (C3) systems in multinational battle 
theaters, like the Persian Gulf War. 

RATIONALE 

Integrating security policies on todays multilevel secure (MLS) computer systems is a difficult, 
sometimes impossible problem. When the security policies themselves cannot be integrated, the 
systems built to implement these policies cannot be integrated either. Sometimes the only way to solve 
impossible problems is to transcend them. For example, when Copernicus developed a new model of 
the planetary system with the sun at the center, his paradigm simplified planetary astronomy and initiated 
waves of discovery by others. Thomas Kuhn documents a number of these ground-breaking paradigm 
shifts in his book, The Structure of Scientific Revolutions.6 Hoping for similar breakthroughs, computer 
security founder Dr. Willis Ware has called for a new MLS paradigm which will make networking and 
integration of MLS systems easier.7 

409 
Copyright 1992 Data Security Inc. 



Although the USA standards for trusted systems call for a unified system security policy, Data Security 
Inc. proposes a new security paradigm based upon multiple, perhaps contradictory, security policies. 
Multiple security policies may be necessary if: 

1. There is more than one security goal, such as privacy, confidentiality and integrity; 
2. The system serves diverse constituents with individual goals and plans, such as the United 

Nations (UN), European Community (EC), and other federations; 
3. The system is composed of separately evaluated pieces, such as an MLS Database 

Management System (Trusted DBMS) and MLS Operating Systems (Trusted OS). 

THE CURRENT PARADIGM 

The current US paradigm is based upon three standards documents described below: the TCSEC, the 
TNI, and the TDl   The current paradigm may evolve significantly because of the ITSEC, the 
'harmonized' European criteria, and the Federal Criteria, a standards document focused on commercial 
system security, now under development at NIST with NCSC support. 

The TCSEC. The Department of Defense Trusted Computer System Evaluation Criteria (TCSEC).8 

embodies the United States' security paradigm. The TCSEC prescribes a unified "system security 
policy" made up of subpolicies such as Mandatory Access Control (MAC) and Discretionary Access 
Control (DAC) which all cohere together to form a single system security policy. The unified policy 
drives the choice of security mechanisms and is the foundation of most assurance efforts. 

The single-policy paradigm works well with stand-alone systems but causes problems when systems 
must be networked or combined and security policy integration is required. For example, when MLS 
products with slight variations in policies (such as Operating System (OS), Database Management 
System (DBMS), and user applications) must work together, there are usually policy integration 
difficulties as well as other interoperability issues [3]. The policy integration problems are even more 
evident when systems enforcing different policies, such as U.S.A. Department of Defense (DOD), North 
Atlantic Treaty Organization (NATO), and France, must interact and share classified data. 

The TNI. The Trusted Network Interpretation (TNI)9 of the TCSEC enlarges the single-policy paradigm 
so that multiple policies may coexist on computer networks. It permits each node on a network to have 
its own nodal security policy, but stipulates that the network as a whole must have an overall global 
network security policy which is the basis for evaluating the security of the network. 

The TDl. The Trusted Database Interpretation (TDl)10 addresses the problem of composing systems out 
of separately developed and evaluated trusted software products. The trusted computing base (TCB) of 
each separate component is called a TCB subset. Each TCB subset can enforce a different security 
policy, such as MAC or DAC. The TDl assumes, however, that these subpolicies cohere into a single 
consistent overall security policy. 

The ITSEC. The draft International Technology Security Evaluation Criteria (ITSEC)11 permits a user to 
specify a security policy, select a system meeting site needs, then request a certified evaluation center to 
do an evaluation to provide the necessary assurance that the selected system is able, in fact, to cany out 
the user's security policy. There is no restriction on what functionality could be in the user's policy. The 
policy could include integrity, availability, non-repudiation, and confidentiality, for example. The ITSEC 
follows the TCSEC lead in requiring users to integrate multiple separate policies into a single coherent 
system security policy. 

Problems With The Currant Paradigm. The paradigm of a unified security policy has some major 
shortcomings which are becoming apparent as multilevel secure systems are fielded. 1. It's inflexible. If 
a user wants to modify built-in aspects of the system security policy, the whole system must be 
devaluated. 2. Exchanging sensitive data with systems witti other security policies is difficult or 
impossible in real-time. Guards are needed at all interfaces, and mapping rarely can translate security 

410 



levels from one policy to the other without upgrading. 3. Its unrealistic. The real world has multiple 
coexistent security policies. A computer security officer creating an automated security policy12 must 
often integrate diverse and contradictory security policies together into a single coherent policy to meet 
TCSEC criteria. Canada's experience trying to integrate the national privacy policy with the national 
disclosure policy into a single policy lattice illustrates the real difficulties users face 13. 4. Performance is 
poor. Adding security to existing systems seriously slows down throughput. 

The current paradigm must be enlarged or shifted to meet the needs of a more interrelated and 
integrated world  With a few significant enhancements, the single-policy paradigm can be extended into 
a more flexible, more interoperative, better-performing muitipolicy paradigm. 

REQUIREMENTS FOR A NEW PARADIGM 

What must a larger and more inclusive paradigm do? It should: 

Handle COTS system construction. Facilitate the integration and tailoring of commercial off-the-shelf 
products to meet the end-user's system security policies 

Separate the policy from the enforcement mechanism. The system security policy should not be such an 
integral part of the system that it is impossible to change policies without reevaluation. 

Ease sharing data with other policy systems. In multinational conflicts like the Persian Gulf, US 
OOD users need to share classified data with allied computers that implement different service, 
national or international security policies. 

Enforce the originator's security policy. Current strategies for sharing data across security policy 
boundaries (Guards, Man-in-the-ioop) frequently must upgrade or downgrade data, thus losing 
the original classification. Even if the multinational situation is one of cooperation rather than 
conflict (for example, divisions of a multinational corporation, or international electronic funds 
transfer), it is desirable to guarantee enforcement of the originator's security policy while sharing 
data across computer systems. 

Permit contradictory policies to operate in parallel. For example, different states have passed 
different laws about releasing AIDS data. If an AIDS patient from Connecticut is in a New York 
hospital, which state's disclosure laws should apply to the release of data? In the European 
Community health system, the varying disclosure laws of 12 different countries must be 
implemented and maintained. 

Improve the performance of trusted systems. Adding security to a system usually degrades its 
performance significantly, largely because of auditing and access control checks. 

Other. The list above is not exhaustive. As more multilevel systems are implemented, we will become 
aware of more difficulties and requirements. Solving these problems is essential to widespread user 
acceptance of MLS systems. 

RELATED WQR* 

Many researchers have addressed aspects of these problems. Biba14 and Clark and Wilson15 

established the importance of integrity policies.   DEC built a muitipolicy operating system SEVMS that 
enforces both confidentiality and (Biba) integrity, showing the commercial feasibility of multiple policy 
systems16. The European Computer Manufacturers Association (ECMA) developed a conceptual 
framework for security across multiple domains with multiple authorities17, raising hopes for international 
standards. 

Multiple policies frequently conflict. Dobson and McDermid discovered that Integrated Programming 
Environments (CASE tools) require three distinct security policies, and "it is critical to articulate and 
resolve the policy conflicts "18 Dobson has been studying organizational security policies, the source of 
many conflicts. Trusted Information Systems (TIS) documented that the Aegis Combat System requires 
three sometimes conflicting policies (information disclosure, information modification, weapon release), 

411 



while the Nuclear Command, Control, and Communications system requires four policies (weapon 
release, denial of service, information disclosure, and information modification)19 Secure Computing 
Technology Corp. (SCTC) and Georgia Tech Research Corporation (GTRC) in their Assured Service 
policy work identified ways that various availability mechanisms both complement and conflict with 
secrecy policies.20 Rae Bums raised the inherent secrecy/integrity conflict21 and Oracle Corp. 
addressed methods for resolving it.22 Tradeoffs between competing policies are often required, and 
often only the ultimate users can determine which policy to emphasize. In a muttipolicy environment, it 
is critical for users to be able to specify how policy conflicts should be resolved. 

Multiple policies may be more complex than single policies. To manage this complexity, researchers are 
studying the fundamental properties of policies. Feiler and Dowson explored the relationships between 
policies and processes, discovering that policies may conflict and that policies about policies may be 
necessary.23 Moffet and Sloman explored management policies and the need for explicit control 
authority in the commercial arena. They also explored how to represent and manipulate policies and 
came to view policies as objects which can be created, destroyed, queried; and which can interact with 
each other.24 The Policy Workbench project at George Mason University(GMU) studied intentions 
implicit in policies, incompleteness in assumptions underlying security policy models, and ways to 
represent security policies, including activity role charts, Petri nets, data flow diagrams, and structural 
diagrams.25 

Several researchers aim for policy flexibility. Grenier, Hunk, and Funkenhauser differentiated policies 
from mechanisms.26 The Planning Research Corporation (PRC) proposed rule-based policies as a way 
to escape the inflexibility of built-in policies and demonstrated that assorted rule-bases can be plugged 
into the same system.27 MITRE's General Framework for Access Control (GFAC) group asserted that all 
policies can be expressed as rules specified in terms of attributes and other information controlled by 
authorities.28 

Our earlier work introduced several concepts which are incorporated into this paper. [1] proposed a 
Muttipolicy Machine which enforces multiple, possibly contradictory security policies using MetapcHicies, 
a term introduced in [3] and expanded in [2]. [4] proposed shared labels to save space, and parallel 
processing of policies and policies on ROM chips to improve performance and standardization. 

THE MULTIPOLICY PARADIGM 

COMPONENTS 

Most security models built after Bell and LaPadula's classic model28 include: 
1) Subjects 
2) Objects 
3) Security Policy 
4) Sensitivity attributes for subjects and objects 
5) Policy Enforcer to mediate subjects' operations 

on objects in accordance with the policy. 

Several additional components are required to handle multiple policies: 
1) Multiple security policies; 
2) Multiple security policy enforcers; 
2) Multiple policy coordinators (metapolicies); 
3) Assignments to specify which policies apply to which subjects and objects. 

Two optional components are needed to provide flexibility and performance: 
4) A means to control policy changes and updates; 
5) A design to avoid policy-enforcement processing bottlenecks. 

412 



Each component is described below. We describe abstract concepts, then suggest concrete ways to 
implement those concepts. 

MULTIPLE POLICIES 

A policy is a set of constraints established by an accepted authority to facilitate group activity. A policy 
may be explicit or implicit, broad or narrow in scope, mandated or optional. Security policies are those 
policies whose goals are protecting the confidentiality, integrity, and/or availability of people, resources, 
and information. Automated security policies [11] protect information within computer systems, and 
require security policies that are much more explicit and formally specifiable than policies intended for 
people. Automated security policies typically include: a) definitions of subjects and objects; b) 
definitions of allowable operations; c) policy rules, and d) data for implementing the policy, such as a 
lattice for ordering sensitivity levels, integrity levels, compartments, etc. Automated security policies 
must be tamperproof and are, by definition, part of the trusted computing base. 

In the Murtipolicy Paradigm, a computer system can enforce more than one policy. The Multipolicy 
Paradigm permits multiple: 

1) Types of security policies (Eg. integrity, MAC, DAC, Chinese Wall30); 
2) Variations of security policies (Eg. integrity by Biba and by Clark- Wilson); 
3) Combinations of policies (Eg. hierarchical, independent, coordinated); 
4) Sources of policy (Eg. user, administrator, government, standards body); 
5) Means of changing policies (Eg. locally, remotely, at sysgen). 

Unlike the current TCSEC paradigm, the Murtipolicy Paradigm does not require that a unified system 
policy be developed, or even that the policies be consistent. Canada, for example, can implement 
separate privacy and confidentiality policies on one system[13], and the EC may keep several separate 
health and financial information privacy policies. 

Policies in current systems are usually implemented as instructions in code, with instructions in the 
kernel TCB for system security policies and instructions in applications programs for user policies. In the 
Murtipolicy Paradigm, complex data structures will be needed to implement each policy and its 
associated metapoiicies. This implementation method can provide both flexibility and assurance. 
Examples are in the companion paper printed in this proceedings, "Metapoiicies II".. 

MULTIPLE ENFORCERS 

Security Policy Enforcers  Security policy enforcers implement the rules of a policy on the subjects 
and objects within the policy domain. Each enforcer is trusted to protect and enforce the policies in its 
domain correctly and must be tamperproof. Enforcers may be implemented in several ways. However, 
it is critical that the policy NOT be built into the enforcer, as it now is in most reference monitor 
implementations. One enforcer may enforce multiple independent policies, or multiple policy enforcers 
may enforce multiple different policies, or multiple versions of the same policy, or multiple subsets of the 
same policy. 

Metapoiicies  Metapoiicies are policies about policies. They provide a framework for clarifying policies, 
explicitly stating the assumptions about policies and the organization's control process for policies. They 
also coordinate the interaction between policies, explicitly specifying order, priority, and conflict- 
resolution strategies. Metapoiicies clarify underlying policy assumptions and relationships, facilitate 
expression of the variety, richness, and multiplicity of security policies, and permit the controlled 
interaction of policies and subpolicies, making complex policy systems possible [2]. Metapoiicies specify 
who can set policy, who can change policy, and the procedures for changing policies. They also include 
rules about developing, verifying, and protecting security policies and rules about the interaction of 
multiple security policies, especially where they conflict. The Multipolicy Paradigm permits multiple 
distinct security policy domains, administered by different organizational entities each with complete 

413 



policy autonomy in its domain, to be modeled in a computer system. Metapolicies control the 
interactions of the multiple policies. 

MULTIPLE DOMAINS 

A policy domain is a logical construct defining the area of responsibility of an authority. The U.S. federal 
government, for example, takes responsibility for regulating interstate commerce (the federal domain), 
while the states take responsibility for regulating intrastate commerce (the 50 state domains). NCSC, 
OSI, ISO, ECMA, DOD. and NATO are a few of the well-known security domain authorities. 

Each security domain may be autonomous, with its own authority, subjects, objects, policies, and policy 
enforcement mechanisms. Others may be part of a hierarchical structure, like Air Force Base (AFB), Air 
Force System Command(AFSC), Air Force (AF), and Dept. of Defense(DOD)   In hierarchical structures, 
the authority and policies of the top domains must be incorporated by the subordinate domains. Under 
the unified-policy model, the base, system command, AF and DOD policies would be integrated and 
implemented as a single automated security policy. However, under the Multipolicy Paradigm, each of 
the individual policies in the hierarchy - the DOD policy, the AF policy, the AFSC policy and the AFB 
policy - would be separate policies, and a policy domain code would be required for each. This gives the 
AFB security administrator the flexibility to change local base policy while leaving national DOD and AF 
policies untouched. 

Domains may overlap each other, so that subjects or objects may belong to more than one domain and 
fall under more than one policy. Patients who fall under the confidentiality policies of multiple states, and 
military information which comes under both national and international confidentiality policies are 
members of overlapped domains. 

Policies in different domains may conflict. However, there must be means to resolve the conflicts as 
they occur. For example, if a national and an international policy are in conflict, which takes 
precedence? A later section addresses conflict resolution techniques. Policies within the same domain 
must not conflict, because logical inconsistencies may create exploitable holes. Research is needed to 
see if policy conflicts are possible between subdomains. 

POLICY ASSIGNMENTS 

There are several ways to assign policies to data. The European Computer Manufacturers Association 
(ECMA) [17] has proposed security domain codes on security labels which indicate under which label 
convention the label is formatted, eg. International Standards Organization (ISO). We propose security 
policy domain codes as a mechanism to indicate which policy domains apply to this subject, object, or 
policy. Whenever policy decisions are made, these policy domain codes would be checked first so that 
the proper policy enforcers can be invoked. Figure 1 illustrates domain codes incorporated into security 
labels. 

Single Policy Label Format: 

OBJECT /SECURITY ATTRIBUTES /POLICY DOMAIN CODE 

Single Policy Example: 
The string of bits representing patient Jones' data release permissions will be interpreted 
in accordance with the New York privacy policy. 

Patient/John Jones /100101 / Privacy-NY 

Figure 1A. Single Policy Domain Code Example 

414 



Multiple Policy Label Format: 

OBJECT I LABEL / POUCY / LABEL / POUCY / etc. 
I  SEQ    / CODE /  SEG    / CODE I 

Multiple Policy Example: 

Patient Smith, who lives in Connecticut, is hospitalized in New York and then sent for 
consultation to a teaching hospital in Massachusetts. The privacy policies for all three states 
apply to him and his hospital record has three sets of privacy attributes. 

Patient / Sam Smith 1010111 Prtv-MA 1010101 Prtv-CONN 1110101 Priv-NY 

Note that labels with multiple policy attributes and multiple security domain codes may get very long. A 
paper published last year, "Shared Sensitivity Labeis"[4] describes an indirect addressing technique 
which permits subjects and objects with the same sensitivity levels to share a single version of the label. 

Figure 1B. Multiple Policy Domain Codes in Trusted Labels 

MULTIPOLICV ISSUES 

C9NFUCT RESOLUTION 

Strategies for resolving conflicts between policies include: 

Resolve the conflicts manually and automate the integrated results. This is the strategy taken by most 
vendors and most user organizations. The information security officer manually integrates multiple, 
possibly contradictory policies into a coherent system security policy. This is a difficult process, since 
each policy has its own source or owner, its own enforcement authorities, and its own evolutionary time 
frame. Developing consensus takes a long time, especially if policies reflect deeply held values. 

Resolve by dominance. If the policies are hierarchically structured, then the policy higher in the 
hierarchy predominates. If the policies are ranked by their importance, the most important 
predominates. Or, if the policies reflect the ranking of the authorities who created them, then the policies 
of the dominant authority predominate. This strategy is appropriate in the military and other 
hierarchically-structured organizations. 

Translate policies into a common form. Dr. Bell advocates this strategy using policy conversion logic on 
a Universal Lattice Machine. He showed that multinational sharing, Clark and Wilson, dynamic 
separation of duty and ORCON can all be implemented with the Universal Lattice Machine.31 

Run in separate policy domains. John Rushby's Separation Machine, as implemented by Amdahl's 
Multiple Domain Facility, allows seven different policies on one machine but no communication between 
domains.32 Parallel processing of policies is possible but resolving conflicts between policies must be 
done outside the Separation Machine. 

Use additional enforcement mechanisms to implement custom user policies in addition to DAC, MAC , 
etc. Type enforcement like that implemented in SCTC's Logical Coprocessor (LOCK)33 provides 
considerable user flexibility. 

415 



Figure 2.   Policy Conflict Resolution34 

SUBJECT Request POUCY 
ENFORCER 

Request 

Operate 

On??? 
OBJECT 

Vote (Y/N) 

POUCY 
DECIDER 

POUCY1 POUCY 2 
METAPOUCY 

Precedence Rules/Data 

Vote 2: Rank 2 

Votel: Rankl 

Policy Conflict Resolution in Figure 2 

1) The 'Subject' wants to operate on the 'Object', but the request must be mediated by the 'Policy 
Enforcef. 

2) The Policy Enforcer passes the request to the 'Policy Deader1 along with the subject and object policy 
domain codes. The Decider consists of multiple 'Policy Decision-Makers' operating in parallel one for 
each policy implemented by the system. 

3) Based upon policy domain codes, the request is routed to the proper Policy Decision-Makers. 

4) Using rules and decision data to evaluate the request, each Policy Decision-Maker sends its Policy 
Precedence Ranking and a Vote (eg. Yes', 'No', 'Don! Care', 'Undecided' or a fuzzy logic number on a 
continuum) to the Metapolicy. 

5) The votes of all the individual policies (Vote 1 and Vote 2 in this example) are combined by the 
Metapolicy and weighed according to its rules as well as the precedence ranking of each oolicv (Rank 1 
and Rank 2 in this example). ,v 

6) The resulting Yes' or 'No' vote is sent back to the Policy Enforcer which then permits or denies the 
requested operation. 

416 



Use rule-based access control. John Page[27], Marshall Abrams(28], Leonard LaPadula35, and others' 
showed how rule bases (rules with one-to-one correspondence with the operations of the system) handle 
many kinds of access control policies. LaPadula proposed a voting technique to resolve rule conflicts 
which we adopt in Figure 2. 

Adjudication. In case of conflict, develop a solution which reflects the tradeoffs and weights of the users 
on the system. If there are multiple applications which weigh things differently, accommodate the 
various weights. The use of metapolicies, or 'policies about policies', to sort out precedence and to 
identify and resolve policy conflicts is illustrated in Figure 2. 

Outside mediation. When two security policies contradict each other, the decision about what to do may 
be best left to a human who understands the content and the context, as in downgrade decisions. 

A combination of these techniques can be powerful. Figure 2 shows that the conflict resolution process 
can be simple and elegant, no matter how many different policies are included. If parallel processors are 
used to implement multiple Policy Decision-Makers [1], the decision-making time could be kept close to 
that of a single-policy machine. 

FLEXIBLE USER SECURITY POLICIES 

One of the frustrations experienced by users is their limited ability to modify the security policies which 
are built into COTS products. Most current systems allow changes to the policy data (eg. the contents of 
the lattice), but not to the policy rules. The problems are. 

1. The rules are built in. 
2. Assurance depends upon a stable policy. 
3. Changes may introduce security flaws. 

Although inconceivable with today's built-in policies, user authorities should be able to add or delete 
policies from their systems at any time. Standardized policies and labels may be distributed on ROM 
firmware {4] or protected software modules and would include metapolicies which describe the policies 
and their interrelationships. Metapolicies which coordinate the policies must be customized to the user's 
needs when each policy is installed. 

There are several ways to provide policy flexibility. COTS vendors can offer customers a set of 
evaluated policy options, clusters of commonly-desired combinations, to choose from when the product 
is ordered. Trusted software can be used to tailor policies further. Modifiable aspects, such as label 
size, number of compartments, and which policies are selected for enforcement, must be carefully 
limited to maintain the integrity of the evaluated system. The vendor could tailor the system before 
shipping, or the System Security Officer (SSO) could tailor it at system generation. 

Currently, user policies are coded many times into applications programs. It is desirable for integrity and 
control to get the policy out of the application and into the system where the same policy can be invoked 
by many programs. Ideally, an SSO should be able to enter entire user policies via trusted software into 
an isolated area of the TCB where their interactions with applications programs and other policies are 
carefully mediated by the appropriate metapolicies. It is clear that this method works when the user 
policies are a subset of the underlying system policy (TCSEC paradigm). It is unclear what should 
happen when there is no underlying system policy (Muttipolicy paradigm). 

Options which don't affect the security of the system, such as audit policy options and default options, 
can be set by the SSO at any time. The vendor should ship any trusted system with conservative 
defaults selected to err on the side of caution. 

When policy change is required, domain administrators can implement changes in policy in their 
domains in a variety of ways. On automated systems, they can "securely download" new policy 

417 



modules, send new firmware chips for installation by each System Security Officer (SSO), or simply give 
orders to the SSOs to make changes. Metapolicies will restrict policy changing to authorized personnel. 

The capacity to absorb multiple user policies (representing multiple nations, multiple divisions, or several 
kinds of integrity policies) without reevaluating the whole system is an integral part of the Multipolicy 
Model. However, evolution of policies raises the issues of reevaluation and recertification 

EVALUATION AND CERTIFICATION ISSUES 

How does one evaluate and certify a system with multiple flexible policies? If policies change, whether 
at sysgen or on-the-fly, when must the system be reevaluated or recertified? There are many questions 
and problems. 

Today, evaluators determine whether or not a system correctly implements a policy with what degree of 
assurance. The Murtipolicy Paradigm requires a shift in thinking so that evaluators determine that the 
system has mechanisms which will correctly implement whatever policy it is given. The evaluators will 
examine the mechanisms for interpreting and enforcing a variety of policies rather than just one. 

Evaluators cannot determine in advance that every possible policy which might come along will work 
correctly in the system. Certifiers will study the installation of specific policies on a specific system. 
Certifiers will also check the metapolicies which are set by the user, such as those that prioritize policies 
in conflict,   Certifiers will need to check the interaction of multiple security policies and to handle the 
problem of too many possible combinations to test them all. 

If evaluators evaluate systems separately from polices, who evaluates the policies? Since there are 
likely to be so many different policies, commercial evaluation centers, like the ones doing evaluations in 
Europe, would be appropriate for policy evaluation. If policies have been developed in different places 
by different authorities and evaluated in different places with different levels of assurance, common 
standards need to be developed. For example, for any desired certification level, each policy must have 
the minimum level of assurance for that certification level. Metapolicies which describe and control the 
policies must be evaluated as well. 

CROSSING POLICY BOUNDARIES 

Crossing policy boundaries is one of the most difficult problems in trusted computing. When classified 
data leaves one policy system, such as the US Military, to go to another, such as NATO, a trusted person 
or process must sanitize and relabel the data and approve the transfer. In the civilian world, privacy laws 
require that the patient or the patient's guardian give written approval for the transfer of medical data to 
another hospital. In both military and civilian life the data owner wants assurance that the data will be 
treated in the new policy realm in sufficient accordance with the owner's policies. 

In a multipolicy system, it is possible for an object to go from one multipolicy machine to another without 
leaving its original policy domain. There are several important assumptions: 

1. The Multipolicy Machines follow standards for labelling objects which preserve the integrity of 
labels and policy domain codes. 

2. The Multipolicy Machines follow standard policies about handling objects from different policy 
systems. For example, if the label is checked and it doesn't match any policy in the system, the 
object is inaccessible to any users on the system. However, the inaccessible object may be 
passed on intact to another system which follows the standards for multipolicy systems. 

The sending and receiving systems may implement a homogeneous, an overlapping, or a heterogeneous 
set of policies. As long as the receiving system is trusted to implement the policies indicated in the label 
associated with the object, there is no boundary-crossing problem. 

418 



If the receiving system does not enforce the policy or policies marked on the object, it must either pass 
the object on to another machine which enforces the appropriate security policy, hold on to the object 
without permitting any access, or as is done now, request human intervention. Which choice is made 
could depend upon instructions which accompany the object, or on the metapolicy for the receiving 
computer. 

IMPLEMENTATION OPTIONS 

Throughout this paper we have suggested several reasonable approaches to implement a Multipoiicy 
Paradigm: 

1. Multiple sets of rule-based policies, as seen in Figure 2, [27] and [35]; 
2. Multiple co-processors, like SCTC's LOCK and Sidearm [33]; 
3. Distributed processors: each node has a local policy and a master node has 

them all; [1] 
4. Parallel processors or policies in ROM chips to improve performance [4]; 
5. Multidomain machines, like Amdahl's Multidomain Facility [32]; 
6. Hybrids of the above 

Other approaches are possible as well, but we do not wish to focus here on implementation options. 
More implementation option information appears on our The Multipoiicy Model; A Working Paper" [5]. 

APPLICATIONS 

The Multipoiicy Paradigm is useful whenever multiple security policies are involved, especially when 
normal security goals are extended beyond DOD confidentiality to include privacy, availability, integrity, 
weapons release control or other policies and wherever users with different values and traditions must 
share a common system. 

Military multipoiicy applications include: multinational battle management, multinational command and 
control centers, logistics involving multiple services, and multinational communications systems. The 
Strategic Defense Initiative is a classic case of multiservice policy interaction, as was the Persian Gulf 
War. An application common to ordinary military systems would be to define peacetime, threat alert, 
and wartime security policies and shift from one to the other, rather than 'loosening' the peacetime 
policy[20] when war starts. 

There is no single standard security policy, like that of the DOD, in the commercial world, so a trusted 
system, to be marketable, must be able to adapt to multiple policies. Although the TCSEC unified policy 
paradigm can adapt to a wide range of needs [Bell, 31], the Multipoiicy Paradigm will facilitate 
expression of users diverse, unanticipated, and contradictory security policies. 

Commercial applications for multipoiicy machines are numerous. Multinational banks, multinational 
corporations, international non-profit activities such as the Red Cross and CARE, merged corporations 
with multiple corporate cultures, colleges and companies which cross state borders, international 
telecommunications systems, are all candidates for multipoiicy systems. 

In non-military government sectors there is even more potential for the multipoiicy paradigm. Almost 
every system developed by the European Community needs multiple policies to express the different 
values and varying traditions of the nations involved. For example, a multipoiicy international health 
system that permits different nations to control security policies for their own citizens is more practical 
than requiring twelve nations to come up with a unified confidentiality and privacy policy. 

419 



CONQLJJStQN 

This paper identified shortcomings in the TCSEC/TNI/TDI paradigm for multilevel secure systems and 
summarized some of the requirements for an alternate paradigm. It briefly described other researchers' 
work in the area, then wove many contributions into a Muttipolicy Paradigm. 

The Muttipolicy Paradigm supports multiple, perhaps contradictory security policies and has many 
applications and uses. Multiple contradictory security policies may be necessary if: 

1. There is more than one security goal, such as privacy, confidentiality and integrity; 
2. The system serves diverse constituents with individual goals and plans, such as the EC; 
3. The system is composed of separately evaluated pieces, such as MLS DBMS and OS. 

Multiple policy systems will be more flexible, but much more complicated in many ways than single 
policy systems. The paper addressed strategies for solving many of the key muttipolicy issues. This 
feasibility study showed that: 

Policy conflicts can be resolved; 

Changes in ways of thinking are needed to evaluate and certify flexible muttipolicy systems. 

There are many strategies for getting policy flexibility while preserving assurance. 

Users can add user security policies to commercial off-the-shelf products. 

Muttipolicy systems may ease the old problem of how to pass sensitive data across policy 
boundaries. 

The Muttipolicy Paradigm can be successfully implemented in many ways. 

The Muttipolicy paradigm will provide greater flexibility for users who need to add their own security 
policy specifics to the security policy of an existing system, ft will make ft easier to transfer data to 
systems in other security policy domains. It will let users model complex real world security policies 
more easily and permit contradictory policies to operate in parallel. Parallel processing may permit an 
improvement in trusted system performance, as well. 

The Muttipolicy Paradigm is now just a concept with potential. Much more work needs to be done to 
make it a reality. 

ACKNOWLEDGEMENTS 

This work was produced under a Small Business Innovative Research grant, contract number F19628- 
91 -C-0157, under the sponsorship of the Electronic Systems Division of the Air Force Systems 
Command, Hanscom Air Force Base, Bedford, MA. 

Several colleagues critiqued the muttipolicy ideas as they evolved and contributed helpful suggestions: 
Marshall Aorams, Victoria Ashby, David Bell, Rae Bums, Dorothy Denning, Jon Graff, Tom Haigh, Grace 
Hammonds, Jody Heaney, Eric Leighninger, Bret Michael, and Bhavani Thuraisingham . 

420 



REFERENCES 

1 Hosmer, Hilary H. "The Multipolicy Machine: A New Paradigm For Multilevel Secure Systems", 
Proceedings of Standard Security Label for GOSIP, an Invitational Workshop, April 1991, NISTIR 4614, 
June 1991. 
2 Hosmer, Hilary H., "Melapolicies I", ACM SIGSAC Data Management Workshop, San Antonio, TX, 
December 1991, ACM SIGSAC Review 1992. 

3 Hosmer, Hilary, "Integrating Security Policies", Proceedings of the Third RADC MLS DBMS Workshop, 
Castile, NY. June 1990, MITRE Technical Paper MTP 385. 

4 Hosmer, Hilary H., "Shared Sensitivity Labels", Database Security, Status and Prospects, North- 
Holland, 1991. 

5 Hosmer, Hilary H. "The MuKipolicy Model, A Working Paper", Proceedings of the Fourth RADC 
Workshop on Multilevel Secure Database Systems, Little Compton, Rhode Island, June 1991, 

6 Kuhn, Thomas, The Structure of Scientific Revolutions, 2nd Edition, University of Chicago 
Press, Chicago, 1970. 

7 Ware, Dr. Willis, on Computer Security Panel, AFCEA Conference, Washington, DC, Feb. 5-7,1991. 

8 Department of Defense, Department of Defense Trusted Computer System Evaluation 
Criteria (TCSEC), DOD 5200 28-STD, December 1985. 

9 National Computer Security Center, Trusted Network Interpretation of the Trusted 
Computer System Evaluation Criteria (TNI), 31 July 1987. 

10 National Computer Security Center, Trusted Database Interpretation of the Trusted 
Computer System Evaluation Criteria (TDI), April 1991 

11 Information Technology Security Evaluation Criteria(ITSEC), draft of 2 May 1991. 

12 Daniel Sterne proposed the terms automated security policy and organizational security 
policy in "On the Buzzword Security Policy", Proceedings of the 1991 IEEE Computer 
Security Symposium on Research in Security and Privacy, May 1991, Oakland, CA 
13 Crawford, D.S. "Modelling Security Policy and Labelling Unclassified but Sensitive 
Information - A Canadian Perspective", Proceedings of Standard Security Label for GOSIP 
An Invitational Workshop, NISTIR 4614, June 1991. 
14 Biba, K.J., Integrity Considerations for Secure Computer Systems, MTR-3153, Rev. 1, Electronic 
Systems Division, Air Force Systems Command, United States Air Force, Hanscom Air Force Base, 
Bedford, MA, April 1977 (ESD-TR-76-372). 

15 D.D. Clark and DR. Wilson, "A Comparison of Commercial and Military Computer Security Policies", 
Proceedings of the 1987 IEEE Symposium on Security and Privacy, Oakland, CA, April 1987. 

16 William Wilson of Area reports (San Antonio, Dec. 1991) that the SEVMS integrity portion is not well- 
utilized because of the absence of a standard integrity user clearance structure like the widely- 
implemented DOD user clearances for confidentiality. 

17 European Computer Manufacturers Association, Security in Open Systems, A Security Framework, 
ECMATR/46, July 1988. 
18 Dobson, John and McDermid, John, "A Framework for Expressing Models of Security Policy", 
Proceedings of the 1989 IEEE Computer Society Symposium on Security and Privacy, May 1-3,1989, 
Oakland, CA. 

421 



19 Sterne, Daniel, Martha Branstad, Brian Hubbard, Barabara Meyer, Dawn Wolcott, "An Analysis of 
Application-Specific Security Policies", Proceedings of the 14th National Computer Security Conference, 
October 1-4,1991, Washington, D.C. 

20 Haigh, T., O'Brien, Fine, Endrizzi, Wood, and Yalamanchi, "Assured Service Concepts and Models", 
draft Final Technical Report, Contract Number F30602-90-C-0025, October 1991, CDRL A007, vol. 1 
and 2. 

21 Bums, R.K., "Referential Secrecy", Proceedings of the IEEE Computer Security Symposium, 
Oakland, CA, 1990. 

22 Maimone, B. and R. Allen "Methods for Resolving the Security vs. Integrity Conflict", Proceedings of 
the Fourth RADC Database Security Workshop, Little Compton, R.I. April 1991. 

23 Feiler, P., "Experiences with Software Process Models, Session Summary: Policies", 
Proceedings Sth International Software Process Workshop, Kennebunkport, ME, October 10-13,1989. 

24 Moffet, J. and Sloman S., The Representation of Policies as System Objects", Domino 
Report.Bl/lC/6.1, August 20 1991; "The Source of Authority for Commercial Access Control", IEEE 
Computer, February 1988. 

25 Sibley, E., Michael, J.B., and Richard Wexelblat, "An Approach to Formalizing Policy Management", 
CECCOIA2-Proceedings of the 2nd International Conference on Economics and Artificial Intelligence, 
Pergamon Press, Oxford, England, 1992. 
26 Grenier, Guy-L, Richard Holt, Mark Funkenhauser, "Policy VS Mechanism in the Secure Tunis 
Operating System", Proceedings of the 1989 IEEE Computer Society Symposium on Security and 
Privacy, May 1-3,1989, Oakland, California. 

27 Page, John, Jody Heaney, Marc Adkins, Gary Dolsen. "Evaluation of Security Model Rule Bases", 
Proceedings of the 12th National Computer Security Conference, Baltimore, Maryland, 1989. 

28 Abrams, Marshall, Leonard LaPadula, Kenneth Eggers, Ingrid Olson, "A Generalized Framework for 
Access Control: An Informal Description", Proceedings of the 13th National Computer Security 
Conference, Washington, D.C, October 1990. 

29 Bell, D.E., and LaPadula, L.J., "Secure Computer System:Unified Exposition and Multics 
Interpretation", MTR-2997, the MITRE Corporation, July 1975. 
30 Brewer, Dr. David F.C. and Dr. Michael J. Nash, The Chinese Wall Security Policy", Proceedings of 
the 1989 IEEE Computer Security Symposium on Security and Privacy, Oakland, CA, 1989. 

31 Bell, D. Elliott Bell, "Putting Policy Commonalities to Work", Proceedings of the 14th National 
Computer Security Conference, October 1-4,1991. 

32 Amdahl Corporation, Multiple Domain Feature, General Information Manual, Amdahl 
MM001501001[1:10]6-89. 
33 Honeywell Inc. B-Level Design Specification for the LOCK Operating System, CDRL A009, Contract 
MDA 904-87-C-6011, June 1987. 
34 The diagram and description combine our visualization of metapolicies resolving policy conflicts[1] 
with Dr. Marshall Abrams' diagram of a proposed ISO conflict resolution process for access control 
policies (unpublished) using Dr. Leonard LaPadulas voting concept for rule-based systems. [35]. 

35 LaPadula, Leonard J. "A Rule-Base Approach to Formal Modeling of a Trusted Computer System", 
M91-021, August 1991. 

422 



THE NEED FOR A MULTILEVEL SECURE (MLS) TRUSTED 
USER INTERFACE 

Greg Factor 
Steve Heffern 
Doug Nelson 

Jim Studt 
Mary Yelton 

GDSS/MLS Program 
Digital Equipment Corporation 

721 Emerson Rd. 
St. Louis, MO 63141 

Keywords: User Interface, Multilevel Security, FIMS 

Point of Contact: Greg Factor (314)991-6235 

423 



THE NEED FOR A MULTILEVEL SECURE (MLS) TRUSTED 
USER INTERFACE 

Abstract 

Today the Department of Defense (DoD) relies upon software which would 
cost many billions of dollars to replace, yet many commands require the 
operational benefits of applied Multilevel Secure (MLS) technologies. 
Traditional secure engineering practices would require that the majority of 
these existing DoD systems be rewritten from scratch. The ideal approach 
is to take advantage of emerging Commercial Off the Shelf (COTS) MLS 
products (Operating Systems, Databases, Networks, Compartmented Mode 
Workstations (CMWs), etc.) by securely integrating them into a certifiable 
MLS System without requiring applications to be engineered in a trusted 
fashion. When this goal is achieved, the DoD will receive the benefits of 
applied MLS technology without having to incur the costs of developing and 
maintaining custom MLS systems that are too large to be certified.   A 
critical missing MLS COTS product required to build a complete, certifiable 
MLS system is a Trusted User Interface.   This paper explores Trusted 
User Interface requirements. 

MT <={ Emaam owrvipw 

The United States Transportation Command (USTRANSCOM) in 
conjunction with the Headquarters (HQ) Military Airlift Command (MAC) 
has established a DoD MLS command center testbed.1 Two objectives of this 
program are to provide MAC with an MLS system which meets MAC's 
operational requirements, and to provide the DoD with a methodology of 
implementing MLS technology in HQ MAC and other command centers. 

The objectives of the MLS Testbed are to: 

• evaluate emerging COTS MLS products for capabilities both 
present and missing 

• integrate COTS MLS Products into a single MLS System with a 
minimal amount of Trusted Computing Base (TCB) extensions 

• utilize as many COTS products as possible, to reduce the amount of 
trusted code which must be developed 

1 The work reported in this paper was performed by Digital Equipment Corporation for the 
Military Airlift Command under contract F11623-89-D0007 

424 



• isolate COTS MLS products from the Trusted Computing Base, to 
allow new and emerging COTS MLS products with higher levels of 
trust to be incorporated into the system as they become available 

• adhere to industry standards and the open systems philosophy 
whenever possible to facilitate lifecycle maintenance and the ability to 
swap out antiquated hardware and software for more modern 
products inexpensively 

• define the standard requirements in building a MLS system and 
feed that information to both government organizations who are 
building MLS systems and product vendors who are building COTS 
MLS products. 

Evaluation of available and emerging Commercial Off the Shelf (COTS) 
MLS products (Operating Systems, Databases, Networks, Compartmented 
Mode Workstations (CMWs) has identified a key missing COTS MLS 
product: a Trusted User Interface. The Trusted User Interface is the 
display portion of the overall system which receives the MLS data which is 
retrieved by way of the secure Operating System, trusted Database and 
secure Network. 

One operational requirement for the USTRANSCOM/MAC MLS system is 
to be able to label different classifications of data on a single screen. The 
end users, in performing their job, are required to pass information about a 
particular missions or exercises over unclassified media (phones as an 
example). The users therefore need to be able to distinguish between the 
unclassified and the classified data, populating an individual screen, in a 
trusted manner. Without a Trusted User Interface, there is no way to 
display trusted security labels on the screen. 

Since existing and emerging COTS MLS products are at the Bl security 
level, and many areas within the DoD have established a need for B3 and Al 
systems, it becomes even more important to use standards that support 
open systems. Standards like POSLX, ANSI SQL, TCP/IP and FIMS. With 
the rigorous use of industry standards, emerging products with a higher 
level of trust can easily replace less mature MLS products.   This allows 
MLS systems to migrate to a higher of level of trust without requiring 
applications to be rewritten to incorporate new COTS products. 

The Form Interface Management System (FIMS) Standard 

History 

The Form Interface Management System (FIMS) is a proposed industry 
standard for forms processing that has been under development since the 
early 1980's and is being considered by the ANSI/ISO accreditation 
standards committee. 

425 



One of the key benefits of this proposed standard is the separation of the 
form processing from the specific application processing.  The separation 
encouraged by the FIMS standard would result in more maintainable code 
and a less tightly coupling to display device peculiarities. 

FIMS Components 

In basic terms, the FIMS Standard is described consisting of three separate 
components: 

• Independent Form Description Language (IFDL) 

• Forms Control System (FCS) 

• FCS application interface 

Independent Form Description Language (IFDL) 

The Independent Form Description Language (IFDL) describes an entity 
called a form. 

Forms Control System (FCS) 

The run-time component of FIMS is the Forms Control System (FCS), 
which controls the form's interaction with both the user (through a variety 
of input and display devices) and the application program. 

FCS Application Interface 

The interface to the FCS from the application is typically written in a higher 
level language (such as Ada or C). The interface performs all interaction 
with the user through the form by calling the FCS. 

MTS TWr Interface Requirements 

In defining the requirements that the typical user desires in the MLS 
system, we have come across several that point to the need for a Trusted 
User Interface to handle the security attributes of the form and the data. 
These attributes are not addressed by the proposed FIMS standard but 
should be incorporated into that standard. 

Need for MLS Screens or Forms 

One of the most basic needs is that the typical MLS system user would like 
to see, on a single screen, the highest level of data for which he or she is 
cleared. A TOP SECRET user, for example, wants forms or screens that 
potentially display sets of data that are composed of TOP SECRET, SECRET 
and UNCLASSIFIED data elements all on the same screen. 

426 



Need for Trusted Labels 

In addition, the user requires that the data on the screen be labeled to 
clearly mark the data fields at the appropriate level of security. 
Furthermore, the labels need to be trusted labels and not advisory labels. 

Need for a Labeling Standard 

These trusted labels need to be associatable with their corresponding labels 
in the MLS operating system, MLS database and the MLS network products 
at a minimum. 

Need for Security Attribute Processing Capabilities 

The Trusted User Interface should also be able to extract from the expanded 
MLS data dictionary, associated with the MLS database, a variety of 
security attributes. These attributes should be handled by the Trusted User 
Interface and not by the application. 

Attributes, similar to data validation, like a field being always at system low 
security level, i.e., always UNCLASSIFIED. When a user would try to 
enter Classified data into a field that is defined to be always Unclassified the 
Trusted User Interface should prevent this. 

Or a data element having a security range, for instance UNCLASSIFIED 
through SECRET, but never TOP SECRET.   If a user tries to enter data 
outside the defined security range, the Trusted User Interface should also 
prevent this. 

Or relations between data elements, things like aggregation rules where 
when a specific data element is classified, other related UNCLASSIFED 
data elements immediately become classified and the database is updated to 
reflect the classification change. This should also be a capability of the 
Trusted User Interface. 

Conclusion 

• There is a need for a Trusted User Interface 

• The Trusted User Interface should be FIMS compliant 

• The additional security requirements are relatively easy to implement 

• It should be possible to develop a B3 Trusted User Interface 

427 



References 

Dan Frantz and Tom Poevey, The Forms Interface Management System 
(FIMS): A Proposed Industry Standard, August 1987 

428 



NETWORK SECURITY VIA DNSIX 

Integration of DNSIX and CMW Technology 

Howard A. Heller 
Harris Corporation 

M.S. W2/7742 
P.O. Box 98000 

Introduction 

With the proliferation of computer 
networks in secure environments, it has 
become apparent that the security of 
network communications must be 
addressed. Currently, most computer 
security implementations are host based, 
that is they concentrate on security within 
a given workstation without regard for the 
communications between these 
workstations. This paper describes an 
internal research and development (IR&D) 
effort completed in early 1991 at Harris 
Corporation, Information Systems 
Division (ISD). The objective of the 
program was the integration of two 
leading edge security technologies to form 
a secure multilevel heterogeneous 
networking environment. 

The IR&D team was to integrate the 
DODIIS Network Security for Information 
exchange (DNSIX) protocol into a 
Compartmented Mode Workstation 
(CMW). The results of the study show that 
it is possible to integrate the two 
technologies to produce a fully functional 
Commercial Off-The-Shelf (COTS) DNSIX 
CMW capable of supporting a network 
operating in compartmented mode. 

This paper will concentrate on three 
unique aspects of the IR&D; integration 
issues, design methodology, and 
leveraging the DNSIX IR&D into new 
business opportunities. 

Background 

The Department of Defense (DOD) 
Intelligence Information System (DODIIS) 
is a community of sites that exchange 
intelligence information via the inter- 
computing network known as the DODES 
Internet. The security requirements for the 
DODIIS Internet were formally defined by 
the Defense Intelligence Agency (DIA) in 
the 1986 publication entitled "DODIIS 
Network Security Architecture and DNSIX 
[1]". 

What is DNSIX? 

DNSIX is a protocol that satisfies the 
technical requirements for 
internetworking in DODIIS. This software 
supplements, and works in conjunction 
with, the standard DODIIS networking 
suite known as TCP/IP (Transmission 
Control Protocol [6]/Internet Protocol [7]). 

DNSIX defines capabilities that manage 
and audit network sessions, maintain user 
security levels across the network, monitor 
access control to protected resources in the 
host systems, and enforce the network 
mandatory access control policy. These 
capabilities will be expanded on in the 
following paragraphs: 

Network Security via DNSIX 
429 



User - Level 
Untrusted appl. 

User - Level 
TCB 

Co-Processor 
Board 
TCB 

DNSIX Modules 

DNSIX manages network sessions by 
establishing a special DNSIX connection 
with the remote host prior to any data 
exchange. A "DNSIX handshake" is used 
to pass information about the initiating 
host to the associated host including: host 
name, network level, application 
identifier, user name, terminal identifier 
and more. This information is sent to the 
associated host in the form of a Session 
Request message and is mediated upon by 
the associated host. This means that the 
information received by the associated 
host, along with its security policy rules, 
determine whether the network 
connection should continue or not. The 
DNSIX module which makes this security 
policy decision is called the Session 
Request Control Module (SRCM). The 
response is sent back to the initiating host 
via the Session Request Response message. 
The DNSIX module which handles this 
session management is appropriately 
called the Session Management Module 
(SMM), and resides on the intelligent 
ethernet board. 

DNSIX audits network events such as new 
connections and closed connections. 
Securitv events are also audited. These 
consist of various levels of access 
exceptions. The DNSIX module which 
performs the audit function is called the 
Audit Trail Module (ATM), and the 
module which detects access exceptions is 
called the Host Access Control Module 
(HACM). 

The definition of a DNSIX access exception 
is not clearly defined in the DNSIX 
specification (Our interpretation is 
explained later in this paper). The result of 
a DNSIX access exception is to abort the 
network session. 

DNSIX maintains the user's security level 
across the network connection by passing 
the label to the associated host as part of 
the initial DNSIX handshake. If the session 
is accepted by the associated DNSIX host, 
the remote process started on behalf of the 
user is set to the security level passed in the 
DNSIX handshake. 

The mandatory access control enforced by 
the DNSIX specification dictates that the 
security level on all incoming and 
outgoing datagrams will be checked to 
ensure the are within the allowable range 
for the particular host. If a datagram is 
created for transmission or received from 
the network which is out of the allowable 
range, the datagram is discarded. The 
DNSIX module which performs this 
function is called the Network Level 
Module (NLM). 

The Host Interface to DNSIX (HID) 
module coordinates the passing of 
messages between the various other 
modules. All messages passed between the 
SMM and the Kernel are routed through 
the HID. 

The figure above shows the various 
modules of DNSIX. The unshaded boxes 
are the modules implemented by Harris 
during the study. 

The DNSIX protocol is documented in 
"DNSIX Detailed Design Specification [2]" 
and the "DNSIX Interface Specification 
[3]". Communication Machinery Corp. 
(CMC) was the vendor supplying the 
DNSIX/TCP-IP software and hardware 
support. 

Network Security via DNSIX 
430 



What is a CMW? 

The Compartmented Mode Workstation 
(CMW) is a computer workstation whose 
operating system is designed to handle 
classified information with differing 
security compartments in a data fusion 
environment. The CMW is designed to 
meet the requirements specified by DIA/ 
MITRE "Security Requirements for System 
High and Compartmented Mode 
Workstations" [4]. 

A CMW handles security for non- 
networked computers by labeling objects 
with security labels and allowing only 
authorized users the ability to manipulate 
those objects. All objects possess a 
classification and each user has a 
clearance. For example, in order to 
determine whether a person should be 
allowed to read a document, the person's 
clearance is compared to the document's 
classification. 

Harris Corp. had previously developed a 
CMW prototype based on AT&T's System 
V Unix release 3.2 and X Windows release 
11.3. This prototype served as the platform 
for our DNSIX integration activities. 

Integration of Technologies 

The DNSIX protocol works in conjunction 
with the TCP/IP protocol and, in CMC's 
implementation, executes on an intelligent 
ethernet board. The communication 
between the board and the host computer 
is accomplished using two distinct 
interfaces. The Berkeley Unix Socket 
mechanism has had some strategically 
placed kernel calls added to it to provide 
the operating system with information 
pertaining to the opening and closing of 
DNSIX sessions. Also, a special trusted 
mechanism was set up for passing DNSIX 
specific information between the board- 
side code and the kernel which could not 
be integrated into the socket mechanism. 

The following events are communicated 
between the host and the board: 

• A TCP open request has been made. 

• A TCP close request has been made. 

• The information obtained from the 
DNSIX handshake. 

• Access exception messages. 

• Acceptance / denial of session 
requests. 

• Abort messages. 

Socket Handling 

The process of opening and closing a 
connection is handled by the socket 
mechanism. When an application opens a 
socket, the socket code calls a new routine 
in the kernel to retrieve all the relevant 
security information. This information is 
stored by the kernel in the process table. 
When the application calls the connect 
socket call, the socket code passes the 
security information to the board. The 
software on the board now begins the 
DNSIX handshake. If the remote 
workstation approves the session, the 
socket code is informed to allow the TCP 
connection to be initiated. If the session 
was denied, the TCP connection is refused. 
On successful connections, the DNSIX 
session closes when the associated socket 
is closed. 

The other DNSIX events listed above also 
need to be passed between operating 
system and the board, but, unlike the 
events above, there are no corresponding 
socket calls for these DNSPX events (e.g. - 
open socket call corresponds to an open 
DNSIX message). 

To provide the communications path 
between the kernel and the DNSIX code, a 
trusted application was created to act on 
behalf of the kernel. This trusted 
application is called the Host Interface to 
DNSIX  (HID).  The  HID  communicates 

Network Security via DNSIX 
431 



with the DNSIX code residing on the board 
by using a special trusted loopback mode 
provided by CMC within the TCP/IP 
software. The HID communicates with the 
kernel by using two new system calls 
(described later). 

Upon startup, the HID opens two trusted 
connections to the board. One is for 
general DNSIX messages. The other is for 
Access Exception messages only. The 
board-side code will not go into 
operational mode until these connections 
have been established. 

sends this message to the HID. The HID 
does not send this message to the kernel. 
Instead, it sends the message to a separate 
program called the Session Request 
Control Module (SRCM). The SRCM 
receives the message and uses its contents 
to determine whether to approve or deny 
the session. In any case, the SRCM sends its 
reply to the HID, which switches the 
message to the board. A discussion of the 
various other functions of the HID are 
beyond the scope of this document. 

This provided a way for the HID to 
communicate with the board, but a 
mechanism was still needed to 
communicate with the operating system. 

We added two new system calls to the 
kernel. One, called "dn6_read", provides 
the HID with a means to receive messages 
from the operating system. The second, 
called "dn6_write", provides a way of 
sending messages to the operating system. 
This provides a full path between the 
operating system and the board. Messages 
from the board are first sent to the HID via 
the TCP connection, and then sent to the 
operating system by means of the 
"dn6_write" system call. Messages from 
the operating system are sent to the HID 
via the "dn6_read" system call and then 
are routed to the board via the TCP 
connection. 

HID Processing 

The HID is basically a message switch. It 
receives messages from the board or the 
operating system and determines where to 
send them. Not all messages from the 
board are sent to the operating system. In 
particular, during the DNSIX handshake, a 
"Session Request" message is sent to the 
remote workstation. This is the message 
which contains all of the relevant security 
information about the initiator of the 
session. The DNSIX software on the board 

DNSIX Data How 

Access Exceptions 

Access exception messages are generated 
by the operating system itself. A CMW 
generates an internal access exception any 
time a user or process attempts to access an 
object to which it is not authorized. These 
exceptions are usually not malicious. For 
example, the files in a directory on a CMW 
are not necessarily at the same sensitivity 
levels. A user only sees those files which he 
has access to, and will not see that any 

Network Security via DNSIX 
432 



other files exist. This is called directory 
virtualization, and is a common CMW 
feature. When the user looks at a listing of 
a directory, the software (the 'Is' 
command) attempts to access all of the files 
in the directory. However, since the 
command runs at the same security level 
as the user, and the user's security level is 
not equal to, or higher than all of the files, 
an access exception occurs. This is a 
normal occurrence and in most cases the 
user is not even aware of the fact that it 
happened. 

The DNSIX protocol provides a means of 
reporting access exceptions from the 
operating system to the board-side DNSIX 
software. It also specifies that any DNSIX 
access exception will cause the DNSIX 
session to be aborted. The specification 
does not, however, specify which host 
events should cause a DNSIX access 
exception to be sent. We decided to make 
this feature extremely flexible. 

The kernel checks for access exceptions 
within each system call routine. These 
routines are used by programs to perform 
specific system functions. Many of these 
routines attempt to access an object on 
behalf of a user program. If the program is 
not authorized to access that object, an 
access exception is flagged. 

Since the CMW doesn't abort a local users' 
session in the above scenario, we didn't 
feel that this should cause a DNSIX access 
exception. However, we decided to allow 
access exception processing to be 
configurable on a per-system call basis. 
Each system call has a flag associated with 
it which is used to determine if an 
operating system access exception should 
cause a DNSIX access exception. The 
default configuration has them all turned 
off. Any combination of system calls can be 
used, for instance, any access exception 
caused by opening a file could cause the 
DNSIX session to be aborted. 

The other means of supporting the access 
exception mechanism is through another 

new system call, called "dn6_except". This 
was provided because of the uncertainty 
about what type of events would cause an 
access exception. With this system call, a 
trusted application can cause an access 
exception based on application specific 
security checks. 

Access exception messages from the 
operating system are sent to the board via 
the HID as described above but with one 
difference. The TCP connection used to 
send access exception messages to the 
board is a separate dedicated connection 
so urgent security relevant messages will 
have processing priority. 

Kernel Additions 

The DNSIX interface code consisted 
mainly of additions and not many kernel 
modifications. The major structure added 
to the kernel was a table called the DNSIX 
Session Table. Its function is to keep 
DNSIX information about processes 
engaged in some stage of a DNSIX session. 

The table is needed to create the link 
between the DNSIX Session Identifiers, 
which DNSIX uses to identify sessions, 
and the socket which the kernel uses to 
identify sessions. The table contains: 

• Process Identifier 

• Session Identifier 

• Socket 

• Device Number 

• Session State 

• Other Information 

A table entry is: 

• Created when a process calls the 
"socket" system call. 

• Deleted when a DNSIX session is 
closed or aborted. 

• Duplicated when a process calls the 
"fork" system call. 

Network Security via DNSIX 
433 



A DNSIX session can be in any of the 
following states: 

• Idle: No session 

• Initl: Socket created, no connection 
yet. 

• Init2: Session request sent, no reply. 

• Active: Session is active. 

• Active_NonDN6: Session is active 
with a non-DNSIX host. 

• Except: An access exception message 
has been sent. 

• Other states are beyond the scope of 
this document. 

All empty table entries have their state set 
to Idle. When a process calls the "socket" 
system call, the corresponding session 
state entry in the table changes from Idle to 
Initl. Within the "socket" system call, the 
DNSIX software retrieves the security 
information from the process table and 
sends this information to the board. At that 
point the session state changes to Init2. 
Once a reply is received from the remote 
system indicating that the DNSIX session 
was approved, the session state changes to 
active. The state remains active until either 
the session is closed or the session is 
aborted. When either of these events occur 
the session state returns to Idle. 

DNSIX provides connectivity to non- 
DNSIX hosts as long as this is supported 
by the local security policy. If a connection 
is made to a non-DNSIX host, the session 
state gets set to Active_NonDN6 rather 
than Active. 

If an access exception occurs while a 
session is active, the state is set to Except. 
This can only happen when the session is 
currently in the active state. When set, the 
state of the session is both Active and 
Except. This state is necessary in order to 
keep the process from continuing its 
activities while the connection is being 
aborted. 

The only other kernel changes necessary 

were minor modifications to some system 
calls. In particular, in the fork system call, 
we added a DNSIX call which would 
duplicate the DNSIX session table entry of 
the parent process for the new child 
process. Unix performs this same 
procedure for files, since child processes 
inherit the resources of their parent 
processes. 

In the kernel's exit and close routines, 
which are called when either a process is 
terminated or the connection is closed, we 
added a DNSIX call which would delete 
the process entry from the DNSIX session 
table. This keeps the table up-to-date when 
a process is terminated before closing its 
connection and when the connection is 
closed in the normal way. 

The kernel's reference monitor is the 
routine which determines if there have 
been any access exception violations. We 
added a routine which determines if the 
exception was caused by a DNSIX session, 
and if so, if the DNSIX exception flag was 
set. If the flag was set, then the exception is 
reported to DNSIX which will abort the 
session. 

IR&D's are real work! 

The key to the success of the project 
resulted from creating a new design 
paradigm for the IR&D. Whereas most 
IR&D's are typically known for their lack 
of documentation and design, we decided 
to treat this one as a "real" program. This 
concept basically tailored the formal 
documentation used by Harris on "real" 
projects. Some of the documents not 
created for this project include: 

• Software development plan 

• Software quality assurance plan 

• Software configuration management 
plan 

• Software requirements specification 

• Software test reports 

Network Security via DNSIX 
434 



We   modified    the   standard software 
engineering   methodology   to meet   the 
needs of the project. Our modified 
methodology consisted of: 

1. Preliminary Design 

2. Design Review 

3. Prototype software 

4. Detailed Design 

5. Design Review 

6. Implementation 

7. Test 

The reason for following this methodology 
was two-fold. First, we wanted to add 
some structure to the typical ad-hoc IR&D 
design process. Secondly, we wanted to 
use this program as a training ground for 
"real" program documentation. This was 
especially important for us because of the 
recent new hire assigned to this project. 

The protocol software, which runs on an 
intelligent ethernet board, was being 
developed in parallel by CMC, a third- 
party vendor. Because our design was 
totally dependant on the interface to this 
software, we needed to keep in close 
contact with CMC so we could modify our 
design based on their changes. 

By providing a Preliminary Design 
Document to the vendor, we were able to 
solve some major incompatibilities before 
any code was ever written. This worked 
both ways. Our design brought out many 
discrepancies in the vendor's software as 
well. The communication between the two 
engineering teams including documents, 
phone correspondence and electronic mail 
was a major benefit to the project. 

We found that the decision to build a 
prototype before the detailed design was 
appropriate. Since the design seemed to be 
constantly changing we decided to freeze 
the design and prototype what we had. 

Since we didn't have the hardware or 
protocol software yet, we designed a 
screen oriented test program which could 
simulate the DNSIX messages passed back 
and forth between the host and the board. 
The test program would also receive the 
messages created by our prototype 
software destined for the board. The 
prototype software used extensive logging 
of debug messages and the test program 
would display these messages without 
having to exit the tester. 

The outcome of the prototype was very 
significant. Many details were overlooked 
because they were based on assumptions 
about how Unix worked or because by 
actually doing the coding we had to think 
at a much more detailed level. 

The prototype software ended up 
producing approximately 90% of the host- 
side software necessary and stabilized the 
design for both CMC's interface and 
board-side software and our host-side 
interface software. Because of the success 
of the prototype stage, we were able to 
create a Detailed Design Document based 
on the Preliminary design with 
modifications from the lessons learned 
during prototyping. 

The implementation phase began when we 
invited the CMC engineer to Harris. We 
made plans for him to stay for 2 weeks, on 
the assumption that there would be many 
problems integrating the two pieces of 
software. 

The first day was spent setting up 
equipment and installing software. The 
second day surprised us all. After loading 
the CMC code on the ethernet boards of 
two machines containing our new 
software, we attempted to open a DNSIX 
connection. It worked! For the first time, 
DNSIX 2.0 had been integrated into a 
CMW and a secure networking connection 
was established. 

Of course everything didn't work 
perfectly. The rest of the two week visit 

Network Security via DNSIX 
435 



was spent trying different tests, debugging 
problems and making design changes on 
the fly. By the time the CMC engineer left, 
we had a very high level of operational 
integrity and were confident that our 
design was a good one. 

We decided up front that we were not 
going to do a formal test plan. This was 
because the goal of the IR&D was to get as 
much experience as possible and to get as 
far along in the integration phase as time 
permitted. The testing was done on a per- 
fearure basis, determining the correctness 
as features were added. These features 
were retested at the conclusion of the 
program. The goal of the IR&D was to 
make the final system have as much 
functionality as possible in order to make a 
convincing demonstration to potential 
customers. We feel the extra time spent on 
adding more functionality at the expense 
of additional testing was well worth it. 

We feel the project went smoothly because 
of the following factors: 

• Upfront design, but not overly 
detailed. 

• Prototyping the design early in the 
project. 

• Constant communication with the 
people that count (direct contact 
between the CMC and Harris 
engineers). 

• Testing distinct modules separately 
and thoroughly before integration. 

• Integration of modules completed 
with representatives from each team 
to facilitate quick turnaround time on 
code changes and quick answers on 
integration issues. 

Win-Win Partnership 

The partnership between Harris and CMC 
was a win-win situation. CMC, developing 
the DNSIX protocol software, was very 
limited in their testing because DNSIX was 

designed to be integrated into a secure 
workstation. DNSIX is tightly coupled to 
the operating system in order to extract the 
user's security labels and be aware of 
access violations. Because CMC lacked a 
secure workstation they wrote command 
line test programs which would simulate 
the actions of the secure operating system. 
This way of testing is awkward at best and 
makes many assumptions as to how the 
operating system may perform its tasks. 

Harris, seeing the potential success of the 
CMW, determined that the obvious next 
step to secure computing was the addition 
of secure networking. This would provide 
a trusted communications mechanism 
between a network of secure workstations. 
The DNSIX IR&D was important to Harris 
in that it provided us with the necessary 
knowledge and experience to present 
leading-edge solutions to our customers 
security problems. 

Teaming with Harris on the integration of 
the two technologies provided CMC with 
the opportunity to exercise their 
technology in an operational environment. 
This reduced their engineering time and 
decreased the risk of software errors. 

Leveraging DNSIX Technology 

By being the first to integrate the DNSIX 
protocol with a CMW, Harris has proven 
its commitment to provide leading-edge 
security technologies to its customers. The 
engineers in our Computer Security Group 
(Harris-ISD) used this activity to develop 
network security expertise for ongoing 
programs that will eventually require 
DNSIX-like capabilities. 

We currently have a DNSIX/CMW 
demonstration capability in our Computer 
Security lab and have received an 
enthusiastic response from customers who 
have seen its capabilities. The ability to 
demonstrate a genuine working system 
produces much more excitement about a 

Network Security via DNSIX 
436 



technology than white papers or visual 
presentations. 

The knowledge gained from our DNSIX 
efforts will be directly applicable to the 
integration of other security protocols into 
customer environments. In particular, the 
SDNS SP3 and SP4 security protocols, 
which provide security for levels 3 and 4 
respectively of the OSI Reference Model 
[5], are of interest to our customer 
communities. We have also observed a 
need for security at the application level 
such as secure electronic mail and secure 
multimedia. These are applications which 
usually contain correspondence between 
two or more individuals and are most 
likely to contain sensitive material. 

The DNSIX IR&D has given Harris many 
benefits and no drawbacks. We feel this is 
because the project focused on developing 
a demonstratable system rather than a pile 
of documentation describing the 
technology. Our tailored design 
methodology and early prototyping 
played a major role in the success of the 
project. By being able to show our 
customers a technology at work, they no 
longer wonder if the technology is 
possible. Instead, the customer begins to 
point out the potential the technology 
could have in their environment and the 
various uses they have in mind for it. 

References: 

[1]     Defense Intelligence Agency, May 
1986, DODIIS Network Security 
Architecture and DNSIX, DRS-2600- 
5466-86, DODIIS System 
Engineering Office, Arlington, VA. 

[2] Defense Intelligence Agency, April 
1990, DNSIX Detailed Design 
Specification, DDS-2600-5985-90, 
DODIIS System Engineering Office, 
Arlington, VA 

[3] Defense Intelligence Agency, April 
1990, DNSIX Interface Specification, 
DDS-2600-5984-90, DODIIS System 
Engineering Office, Arlington, VA. 

[4]     Defense Intelligence Agency, Nov 
1987, Security Requirements for 
System High and Compartmented 
Mode Workstations, DRS-2600-5502- 
87, DODIIS System Engineering 
Office, Arlington, VA. 

[5] ISO 7498 Basic Reference Model for 
Open Systems Interconnection 

[6] MIL-STD-1778, August 1983, 
Transmission Control Protocol 

[7]     MIL-STD-1777,       August       1983, 
'Internet Protocol" 

Network Security via DNSIX 
437 



NEW DIMENSIONS IN DATA SECURITY 

The innovative DES-chip called SuperCrypt allows for development of secure 
computer systems without the current limitations inherent in most chips currently 

available. 

Karl Heinz Mundt 
CE Infosys 

512-A Herndon Parkway 
Herndon, VA 22070 

703-435-3800 

Despite ever increasing importance, 
achieving reasonable data security in the 
fields of computer based information 
processing and telecommunications, has 
proven to be implemented only with the 
greatest of efforts. One reason is the 
rapid developments in information 
systems, such as networks, which are 
increasingly dependent on growing 
interoperability. Also, the availability of 
distributed computing power is steadily 
increasing. The incredible growth of 
data being archived on mass storage 
devices, distributed in LANs, and 
telecommunicated over the public 
telephone network has created a rising 
percentage of security sensitive data. 
Needless to say, it is in the best interest 
of the system users to protect this data 
from unauthorized tampering. 

Providing absolute secure physical 
access control of sensitive data, 
especially in multi-user environments or 
freely accessible channels such as the 
telephone network is practically 
impossible. Providing a logical access 
control using data encryption has proven 
to be far more effective. The science of 
cryptography provides one of the most 
effective solutions. 

Data Encryption Standard 

Probably the best known and the first 
standardized encryption method is the 
Data Encryption Standard (DES), which 
was standardized and published in 1977 
by the U.S. National Bureau of 
Standards. DES is a symmetrical block 
cipher algorithm characterized by the 
same key being used for en- and 
decryption of a message. The coding 
operation processes plain-text blocks of 
a fixed length; in this case 64 bit. The 
data encryption standard essentially 
consists of 16 iterations of permutations 
and substitutions being applied to the 
plain text for the encoding, or in reverse 
order to the ciphered text for the 
decoding operation. After an initial 
permutation (IP) the input data is 
sequentially routed through 16 blocks of 
XOR and specific DES substitutions, 
dependent on the bit pattern, with data 
from a function table. Finally a reversed 
input permutation IP1 is performed. 

438 



64 Bit Input 64-BA Input 

• •(•. ' ~ 

-K?)-^ 

*P 

. Kti 

rRO 

K.. 

1 
X            J 
* 1   1" 

64 Bit Output 

ENCRYPTION 

64-B* Output 

DECRYPTION 

Picture 1: Structure of DES Algorithm 

The most important initial parameter of 
DES is a key code of 56-bits length, 
from which 16 partial keys are 
generated. Generating these 48-bit keys 
is part of the DES-algorithm and is 
achieved by permutation and a 16-level 
shift-function. The difference between 
encrypting information and decrypting is 
the way in which keys are generated. To 
decrypt the keys are presented in 
inverted order. The number of possible 
encryption results is limited only by the 
length of the 56-bit key used and is 
consequently 256 (about 7*1016). 

Different DES-Modes 

Various modes of operation are 
standardized for DES to drastically 

decrease the chance of attacking the 
encrypted data by statistical methods. 
Long message streams; however, need 
additional protection by transforming 
identical plain text into non-identical 
encrypted counterparts. Some of these 
schemes are known as Cipher-Block- 
Chaining (CBC), Output-Feedback- 
Mode (OFB) and Cipher-Feedback- 
Mode (CFB). DES not only protects 
encrypted data against unauthorized 
access, it also reveals any manipulation 
to the encrypted data, i.e. due to 
transmission errors. This application of 
DES has been standardized in 1986 as 
Message-Authentication-Code (MAC) at 
ANSI. The application of MAC is a 
valuable feature for example in the area 
of electronic banking. 

Problems Inherent in 
Applying Cipher-Methods 

A number of products using the above 
mentioned cipher-methods are already 
certified by American institutes and are 
predominantly used in banking 
applications. A major drawback of 
secure cipher-methods is that they 
usually have a negative influence on the 
computing speed of the systems in 
which they are used. The known 
software and hardware implementations 
of DES have not been able to keep up 
with the requirements of current systems 
in respect to their encrypting and 
decrypting speed. This is especially true 
for software implementations of DES 
because of the problems inherent in 
programming bit-permutations, and 
results in time-consuming 64-bit 
encryption operations (which even on 
modern microprocessors need several 
milliseconds). Previous hardware 
implementations achieve maximum 

439 



encryption speeds of 40 Megabits per 
second. 

The SunerCrvnt Chip 

SuperCrypt CE99C003, a highly 
integrated ASIC developed by CE 
Infosys, has a number of advantages: 
• high encryption speed (160 Megabit 

per seconds at 33 MHz chip clock), 
• loadable algorithms, and 
• built in key management functions. 

A-Port 

_*u *L 

Control Port 

-j|   Input Buffer 

Cipher Kernal 

S-Box 

K Output Butler 

J 

B-Port 

Control Register 

Process Control 

Unit 

Kay 

Selector 

Kay 

Storage 

Control and 
Status Unas 

Picture 2: Block Scheme of CE99C003 

SiwerCrvot Architecture 

SuperCrypt architecture realizes a 
physical division of security relevant 
functions such as the loading of keys and 
algorithms and the use of the data paths. 
For this purpose, SuperCrypt uses a data 
port A and a control port C. The 8-Bit 
control-port C is used when 
downloading the S-box contents or the 
keys, and when the access rights for data 
port A are defined. The 32-bit wide A- 
port, which also supports 8- and 16-bit 
accesses and automatically performs a 
bus-conversion, is used for fast data 
transfer. Internal registers are used for 
initializing SuperCrypt and can be 

accessed both from the A-port and the 
C-port directly using address lines, and 
indirectly using pointer-registers. 
Data port, B, is used for transferring 8-, 
16- and 32-bit data and allows for direct- 
buffer applications. In direct-buffer 
mode, data is fed into SuperCrypt A-port 
and read out to the B-port after en-or 
decryption directly into a buffer (RAM). 
Data can also be read from a buffer into 
the B-port and then made available at 
the A-port. This ensures optimal data- 
throughput even if slow bus-systems are 
used. 

Snecial Features 

SuperCrypt supports the DES-algorithm 
and all operating modes discussed above 
with maximum data-throughput because 
of an internal feedback-path. Even more 
complex variations of DES are 
supported by: 
• increasing the effective key length 

to 112 bit 
• or by changing the contents of the 

S-boxes. 

SuperCrypt offers loadable 
substitution boxes (S-boxes). The most 
significant cryptographic component of 
DES is the S-boxes contents. The 
methodology of the S-box construction 
can have far reaching implications for 
the security of the algorithm. The major 
nonlinear component of DES is the 
function/of the S-boxes. This 
nonlinearity gives DES its significant 
cryptographic strength. The function/ 
takes as input 32 bits of partially 
enciphered data and 48 bits of key and 
produces 32 bits of partially enciphered 
data as output. SuperCrypt's loadable S- 
boxes provide the opportunity to create 
proprietary algorithms or load newer 
algorithms of greater strength. 

440 



The following features are unique to 
SuperCrypt: 
• the internal key-storage of up to 

16 keys 
• and the Master-Session-Key 

concept, 
both of which greatly simplifies the 
handling of external keys. This is a 
potential point of attack in other systems 
not supporting this feature. The Master- 
Session-Key concept allows the often 
necessary public transport of encrypted 
keys, called Session Keys, which are 
decrypted internally and consequently 
stored with a Master-Session-key only 
when loaded into SuperCrypt. The 
Master-Session-Key feature is an 
optional method to load keys into the 
key storage. Normally the keys are 
stored in its original pattern in the key 
storage. This optional feature encrypts 
or decrypts the key pattern you load and 
then stores it. This means that while 
loading a new key, a "session" key can 
be generated by encrypting it with a 
"master" key. The new "session" key is 
then stored in the key storage. This 
guarantees protection against tampering 
since the "session" key is computed only 
inside the chip. This feature allows 
distributing keys in a non secure area. 

KEY 

A-Port Con Jl Port 
/ k jr » 

I    , / \/ i 

n> Input Butter 1 Control FtagtaMr 

CphOf Korna i    T 
S-Box 

( 
, Process Control 

Unk 

f  

L 1 
>   ^ 

Output Butts r 

K.y 

Sotoctor 

t— Kay       Jft 

Storage     W 

| 

B-Port Control and 
Status Una* 

Picture 3. Standard key load procedure 

A-Port 

-j|   Input Butffll 

=E 

Cipher K»rr 

KEY 

ConjlPort 

Control Regrstor 

IT 
Sjtox ^  Procaaa Control 

I    -jgjy Unit 

'—    OufrutBuWr] 

——1     f       t' K,y   e— 
Storago       V^U 

B-Port Control and 
Sums Linos 

Picture 4. Generating a session key with a 
specified master key 

Another mode is the Key-Stream- 
Generator mode (KSG), a variation of 
the OFB-mode. Instead of using the 
cipher text of the previous block, an 
incrementing 64-bit counter generates 

441 



the initial vector of the cipher-function. 
This mode makes the realization of a 
pseudo-random generator possible and 
additionally allows random access to 
plain-text data within encrypted 
messages generated by this stream- 
oriented mode. 

K—* 

IV 

1 
IV+1       Ps IV+(n-1)     ft 

DES 

-x> 

L 
K—5    DES 

•4/ 
Ci 

K—5 

1 
DES 

CJ 
C. 

Picture 5: KSGMode 

A Triple-Cipher option is available 
with all operating modes. Plain-text 
data is DES-encrypted three times by 
first encrypting, then decrypting and 
encrypting once again with different 
keys each time. The triple encryption is 
automatically performed internally and 
greatly enhances the cryptographic 
strength of DES. 

The encryption speed is linearly 
dependent on the speed of SuperCrypt. 
Encrypting a 64-bit block, excepting the 
Triple-Cipher option, takes 12 cycles. 
At the frequency rate of 33 MHz, this is 
equivalent to 360 ns or 160 MBit/s. 

Specific Advantages 

The advantages of an internal key 
storage are: 
• a high degree of protection against 

attacks 
• and the exceptionally high speed 

with which keys are changed. 
After loading the keys they are no longer 
accessible from outside the chip. Using 

the integrated key-cipher to realize a 
Master-Session-Key concept makes it 
possible to perform ciphering with keys 
only decrypted after loading into 
SuperCrypt. This provides a protection 
feature against cryptographic attacks. 
Apart from selecting the required cipher 
mode only the key to be used for cipher 
must be addressed upon initializing. 
Different write attributes can be attached 
to each key, which can govern the usage 
of the key on data or the use for en- or 
decryption with a particular key. CMOS 
technology manufacturing makes 
buffering the key-storage or the S-Boxes 
possible. 

To allow easy integration into Bus- or 
micro controller-systems, SuperCrypt 
supports Interrupt- and DMA-functions. 
Two DMA-channels are available. Two 
data-request signals make it possible to 
signal the readiness to accept or send 
data to a DMA-controller. 

Adjustment and control of the operating 
modes is handled by programmable 
internal registers. To minimize the 
hardware address space, some of the 
register sets are indirect, that is, they can 
be accessed using a pointer-register. 
Access on the remaining registers is 
handled by setting an address pointer. A 
pointer that automatically increments 
after each register access, further 
simplifies initializing the register set. A 
programmer can load data for the 
indirectly addressable registers in one 
burst from a table. The C-port register 
set is used to control the security 
relevant functions such as loading keys 
and S-box contents, and therefore can 
only be accessed from the C-port. It 
also uses directly and indirectly 
addressable registers. 

442 



Initializing SuperCrypt mainly depends 
on the operating mode and the 
application requirements — it may only 
require a few programming statements. 
If SuperCrypt is used in a battery- 
buffered application, initializing the key- 
storage and loading the S-boxes needs to 
be performed only once. A key may be 
loaded into any position of the key 
memory addressable by itself. Any key 
may be overwritten purposely later. 
Each key can be given three attributes 
upon loading and are stored with the 
key. These attributes can prevent a key 
from being used for a specific de- or 
encryption operation and protect a key 
from being overwritten. When loading a 
key, the Master-Session-Key function 
can be utilized. A key loaded encrypted 
is decrypted with a Master-Key stored at 
any address during the download, and is 
then stored as a Session-key. The key 
memory cannot be read. The individual 
keys are made accessible after 
downloading by initializing the Key- 
Enable register KYE. 

The S-boxes contain 512 Byte and are 
loaded in one burst using the C-port data 
path register. Immediately after loading 
the S-box, memory may be verified. 
Further attempts to read are prevented 
by the chip logic and are only possible 
after a completely new download. If 
DES encryption is desired, the 
substitution data must conform to the 
standard. Nevertheless, a customer may 
load proprietary S-Box functions. 

Application Support 

The widespread use of information 
processing systems makes a number of 
encryption applications possible where 
data security is required. 

For the first time available anywhere, 
SuperCrypt provides a hardware 
platform usable in real-time encryption 
without compromising the performance 
of the host-system. 

To ease the design of new developments 
containing SuperCrypt, a design kit is 
available from CE Infosys. A fully 
functional 16-bit AT-adapter with 
numerous test-points that support all 
operating modes, detailed schematics, 
PAL-equations, and demonstration 
software in source and object code is 
included. 

New Dimensions 

in 
PC Data Security 

The overwhelming success of personal 
computers over mini and mainframe 
computers in the last decade can be 
primarily contributed to the strategy of 
providing an "open system" philosophy 
for both the hard and software. Based 
on the SuperCrypt chip CE Infosys 
provides hard and software platforms 
with an "open architecture" for 
developing applications which require 
security functions. 

Software developers at the OEM, VAD, 
VAR, or End users level can create new 
or modify existing applications to fit 
virtually any security requirement 
without having to worry about timely 
and costly hardware and operating 
system software development. Complex 
security concepts and individual 
customization for the application 
environment can be implemented in just 
a fraction of the normal development 
time. 

443 



CE Infosys' application examples 
includes numerous "off the shelf 
functions ranging from basic en- and 
decryption to complete PC security 
functions including access, resource 
control and en- and decryption of files 
and/or any mass storage device or 
backup device. 

"Off the Shelf 
Functionality 

Three basic hardware platforms are 
currently available all of which use the 
SuperCrypt encryption chip for the 
cryptographic functions. 

The security controllers (SC8810, 
SC8820) are available for AT-Bus (ISA- 
Bus), Micro Channel Bus or PCMCIA 
Bus for laptops. A special version for 
ISA-Bus with an integrated chip card 
reader is also available for laptops. 

    - 
Interim 

Chip Card 

_ 
Internal Super 

Cry.. 
1 

lntrf.ee 

to 

Target 
Sjltea 

CPU 

i 
1 

DOWB 

r~ BIOS 

for 

Target 
Syifcm 

1 

Oplio. 

SCSI 

Controller 

lx.id.bfc 

Functions 

L 

Picture 6: Security Platform Architecture 

The security SCSI controllers (SC5430, 
SC5440) are available for AT-Bus (ISA- 
Bus) and Micro Channel Bus and 
combine the functionality of the basic 
security computer with full SCSI device 
and operating system support. 

Application Example 1 - MiniCrvpt 
An encryption adapter using 

Sup^Krypt 

The cryptographic adapter, MiniCrypt, is 
available for AT-Bus (ISA-Bus) and 
Micro Channel Bus. It is designed to 
provide fast "file-by-file" encryption. 
MiniCrypt provides an extremely 
powerful platform by supporting most of 
SuperCrypt's functions independent of 
the operating system used. Most 
importantly, it supports SuperCrypt's 
high encryption speed capability. The 
half-length ISA and MCA adapters are a 
cost effective solution when existing 
software applications need to be speeded 
up by factors of 10-50 percent. Another 
option, the 64KB buffer, together with 
direct buffer mode operations, can 
double the encryption throughput. The 
product, "off the shelf, includes the 
adapter as well as DOS utilities for file 
encryption or decryption using DES. 
The sample application software is 
designed to meet a wide end user 
community and therefore, the loadable 
S-boxes invoke the Data Encryption 
Standard (DES). The API available for 
MiniCrypt allows one to create 
customized software that incorporate the 
enhanced features of triple DES or 
double length keys. For the end user 
desiring a proprietary algorithm, non- 
DES S-box contents and double length 
keys can be integrated to provide for 
very interesting cryptographic 
algorithmic strength. Encryption speed 
is limited only by the PCs internal bus 
system (2-2.5 MByte/s on an 8 MHz 
PC). MiniCrypt's speed and its exciting 
cryptological functions open up whole 
new applications that take advantage of 
encryption, where previous software 
solutions either were too slow or used 

444 



weak algorithms to provide the 
necessary speed. 

Application Example 2 - SC8810 
A security adapter using SuperCrvpt 
providing encryption, access control. 

and audit trail functionality. 

Whereas MiniCrypt provides for file-by- 
file encryption, the SC88XX provides 
for a total PC security solution. The 
SC88XX hardware platform is available 
for: 
• AT-Bus (ISA-Bus) 
• Micro Channel Bus 
• PCMCIA Bus for laptops 
• A special version for ISA-Bus with 

an integrated Chip card reader is also 
available for laptops. 

This high-end security platform provides 
"off the shelf functions including: 
• access control with optional chip 

card or smart card support, 
• System resource control (floppy, 

hard disk, interfaces), 
• Boot stop, 
• "On-the-fly" permanent encryption 

of mass storage, 
• User dependent encryption of floppy 

disk drives, or 
• Selective user dependent file 

encryption. 
As with MiniCrypt, one of the most 
important features that SC8810 
introduces is "transparent" encryption 
for the end user. Security controllers 
that detrimentally effect personal 
computer performance are usually met 
with disdain from end users and are 
attempted to be circumvented. These 
applications designed with SuperCrypt 
avoid this serious end user concern. The 
Master-Session-Key management logic 
provides a standardized method of 
distributing keys, supporting security 
adapters in a corporate environment. 

Previous version of SC8810 that used 
other than SuperCrypt encryption chips, 
required a metal cover to prevent 
tampering. SuperCrypt's Master-Session 
Key concept and internal storage of 16 
keys make this not necessary. 
Sophisticated user profiles governing 
access to programs and system resources 
are supported, as are time profiles for 
regulating system access. Designed to 
meet a wide end user community, the 
loadable S-boxes invoke the Data 
Encryption Standard (DES). As in 
MiniCrypt, SC8810 can be customized 
to take advantage of triple DES or 
double length keys. Once again, for the 
end user desiring a proprietary 
algorithm, non-DES S-box contents and 
double length keys provide for very 
interesting cryptographic algorithmic 
strength. Both DOS and OS/2 operating 
systems are supported. 

Application Example 3 - SC5430 
A SCSI controller using SunerCrvnt 
providing encryption of UP to seven 

SCSI devices. 

The Security SCSI Controller Platforms 
are available for AT-Bus (ISA-Bus) and 
Micro Channel Bus. They combine the 
security features of encryption and 
access control with the functionality of a 
high-end caching SCSI controller having 
full SCSI device and operating system 
support. Currently supported under 
DOS are: 

Hard disks 
Removal disks 
Magneto-optical disks 
Tape 
DAT 
CD-ROM 
and WORM devices 

Novell and OS/2 drivers are under 
development. Each device, SCSI ID 

445 



dependent, can be permanently 
encrypted "on-the-fly" thus providing 
secure storage of sensitive data or 
programs. The processing speed of the 
SC5430 is equivalent to other 
commercially available SCSI controllers 
without encryption. Up to seven 
different peripherals can be attached, 
operated and encrypted/decrypted with 
different keys simultaneously at speeds 
fully transparent to the user. Secure tape 
backups on a network or "securing" data 
or programs on removable media are just 
two of the most common application 
areas. 

Access control is done on a SCSI ID 
basis, utilizing chipcards. Each chip 
card maintains a table of: 
• SCSI IDs 
• whether the SCSI ID is encrypted or 

non-encrypted 
• Keys associated with each SCSI ID 
Removable media support (Iomega 
Bernoulli boxes, Syquest drives, 
Magneto-optical drives, tape drives, etc.) 
is handled with great sophistication. 
Multiple keys can be used at one SCSI 
ID. Each data cartridge, (tape, MO, etc.) 
can have a key assigned uniquely to it. 
The Master Session Key concept allows 
keys to be encrypted on the chip cards. 

In networks a combination of security 
SCSI controllers for the server(s), 
SC881Xs for the workstations, and 
MiniCrypts for those workstations 
requiring only cryptographic functions 
but not access control can provide the 
solution for a "secure" network 
environment. 

APT Availability 

A fully documented API (Application 
Programming Interface) as well as the 

development tool kits (C-Libraries, C- 
Source, BIOS-Routines, etc.) are 
available to provide numerous security 
functions. 

API Security Functions: 
• Access Control 
• Boot Stop 
• Chipcard Services 
• Resource Control 
• Cipher Engine (DES and other 

Algorithms) 
• Cryptographic Tool Kit (one-way, 

hash, signature, etc.) 
• Secure Key Storage 
• Key Management 
• Audit Trail (Logbook) 
• Independent Time and Date 

The API can be enhanced further to 
provide for future requirements or new 
algorithms. Software Development Kits 
(SDKs), for the application programmer 
and Product Development Kits (PDKs) 
which include the actual hardware 
design and manufacturing 
documentation are available. 

Future Applications 

SuperCrypt's flexibility combined with 
CE Infosys' Security Platform Hard- and 
Software open up whole new 
applications that can take advantage of 
encryption for security. 
• At SuperCrypt's speed makes 

possible encryption in "real time" of 
digital TV, one of the fundamental 
requirements for easy 
implementation of "Pay TV". 

• Computers of the future can easilly 
have their disk, LAN adapters, 
HOST adapters or SCSI controllers 
equipped with SuperCrypt to cipher 
data "on-the-fly" as it streams 
through the controller. Backup 
tapes, disks, MOs and even CD- 

446 



ROM can store data in encrypted 
form and if grouped in blocks, each 
block can be ciphered with a 
different key. 
PC motherboards, Minicomputer and 
mainframe processor boards 
FDDI fiber optic networks for data 
communications and 
telecommunications 
Customers purchasing data on disk 
or CD-ROM would purchase those 
keys required to unlock the blocks of 
data actually purchased. This 
concept may very well revolutionize 
the methodology of software 
distribution or updating. 

447 



A Note on Compartmented Mode: 
To B2 or not B2? 

Theodore M.P. Lee 

Trusted Information Systems, Inc. 
P.O. Box 1718 

Minnetonka, MN 55345 

Abstract 

This paper calls into question current government computer security policy. That 
policy, as seen in DCID 1/16 and DoDD 5200.28, permits a Bl automated information 
system to be used in compartmented mode. In compartmented mode some users of a 
system are not formally approved for access to all of the information in it — 
even though all users have a uniformly high national security clearance — so as to 
minimize the damage caused by espionage. This note compares the reasons why 
compartmentation is used in the intelligence community with the ability of C2, Bl, 
and B2 systems to resist various kinds of threats. That comparison convincingly 
demonstrates that at least a B2 system must be used in compartmented mode unless 
most of the benefits of having compartmentation are not to be sacrificed when an 
automated information system is used to handle and process compartmented information 

Keywords 

compartmented mode, DCID 1/16, trusted systems, need-to-know, threats, 
vulnerabilities,   risks 

Introduction 

A system is running in compartmented mode if all users have national clearances at least to 
the level of all information in the system, the system has information from one or more 
compartments (that term is defined more sharply for our purposes later), and at least one user has 
not been approved for access to all compartments on the system. For the purposes of this note we 
are assuming everyone has at least a SCI (Sensitive Compartmented Information) clearance in accord 
with DCID (Director of Central Intelligence Directive) 1/14 [2]. It would appear that a system 
evaluated to at least the Bl level is necessary to support compartmented mode operation1, since Bl 

Strictly speaking, Bl is not logically "necessary." In a C2 system compartmentation in a benign environment can be (and 
is, albeit at risk) enforced analogously to the way it is in a strictly paper world. Users bear the responsibility of ensuring 
that each electronic document is marked with or in some fashion associated with its set of compartments. When an access list is 
created for a document (or some other form of access control that meets C2 requirements is employed) the user who sets or changes 
the access list has the responsibility to ensure that only people who are authorized access to all of the compartments in a 
document are placed on its access list or otherwise granted access to it (e.g., by giving only them a password for the document on 
systems that employ such means of access control.) The primary difficulties with this scheme (apart from its penetrability) are 
that a person has to keep track of the access approvals of, in principle, all other users and that it makes it difficult to use 
group accesses (if, say, all users in office A do not have approval for compartment B, I can't put "office-A" on a group access 
list for document marked with compartment B).   Level Bl is the first level that can keep track of user access approvals and the 

448 



is the first level that supports the security markings needed to enforce compartmentation. DCID 
1/16 [1] says that Bl is sufficient, mentions B2, but gives little guidance on when B2 might be 
necessary. DCID 1/16 is not alone in permitting Bl to be used in what amounts to compartmented 
mode: the NCSC "yellow books" [3], DoDD 5200.28 [5], and the DIS Industrial Security Manual 
(ISM) [6] all also permit Bl to be used when not all users have formal access approval for all 
information in the system, even though they all have a national clearance at least as high as the 
most highly classified information in the system. Anderson's paper [4] is one of the first 
public attempts to correlate trust levels with risk environments; unfortunately it is ambiguous in 
its treatment of compartmented mode: although it has "SCI" as an element in its 
clearance/classification matrix, it never uses the term "compartmented mode" and explicitly says 
for threat/risk category 1 (for which Bl is applicable) "there is no threat or risk since all 
users are cleared/approved for all material." (emphasis added) Each of these references attempts 
to define when a level of trust higher than Bl might be needed, but, especially in the case of the 
ISM, are not consistent with each other. In any case, [3], [4] ("with more than one category of 
SCI present, raise the threat/risk category by 1"), [5], and [6] condition the transition from Bl 
to B2 or B3 by the number of compartments for which not all users have access approvals; why the 
number of compartments is used rather than some notion of sensitivity of the actual compartments 
involved has always eluded me2. The remainder of this note is an attempt based on first principles 
to analyze further which level should really be used. 

What is a Compartment? 

First, we need to make clear what is meant here by "formal compartmentation" or "formal 
compartment", as that term is used in the intelligence community. For someone to have access to 
a formal compartment at least four events must happen: the person must have a "favorable" DCID 
1/14 background investigation (Bl)3, there must be at least an administrative decision that the 
access is necessary and appropriate, the person must be given some kind of briefing on why the 
compartment needs (special?) protection, and he must sign a non-disclosure agreement specific to 
that compartment. The key point is that enforcement of compartment access is just as mandatory as 
enforcement of the national classifications: a person who has been granted access to information 
in a compartment does not have the right to bypass the administrative process and determine that 
someone else should see that information who has not been given formal access approval4.     We 

compartment markings on a document and use that as a basis for granting or denying access. (In a Bl system I could put 
"office-A" on the access list for the above B-compartment document and still be ostensibly assured that those in office A who 
did not have B access approval could not have direct access to it.) 

Roger Schell's explanation that "in most cases that gives you the right answer" is not intellectually satisfying, although 
I do understand how when one is thinking in the context of the common national control systems his reasoning makes some kind of 
sense. 

Since it appears that almost everyone in the intelligence community has at least that, the issue of national clearance is 
often ignored in discussions regarding compartments within the community. Also, since it is the case that the "national 
classification" of SCI information is in some sense a meaningless concept, the fact that SCI documents may bear different 
national classifications can usually be ignored in determining whether a system is running in compartmented mode or not Even 
though a document might be marked SECRET WHIZBANG, where WHIZBANG is an SCI compartment,neitheraSECRETnorroutineTOP 
SECRET clearance is enough to permit access: one must have an SCI clearance which in itself gives one a TS clearance; the marking 
of SECRET says something about the sensitivity of the document (although I'm not clear what) but says nothing about what level of 
personal trust is needed to permit access to it since that is superseded by the (implied) SCI marking. 

We are here deliberately not addressing the fact that some, perhaps even a large number, of intelligence community officers 
and employees are authorized to "declassify" compartmented information (decide that for some reason it no longer needs 
protection) or to release it in whole or in part (usually in sanitized form) on a case-by-case-basis to people who do not have 

449 



could fine-tune that definition by saying something about who can establish compartments and what 
minimum kinds of administrative procedures (bookkeeping at least) must be involved, but this is 
close enough. In any case, different organizations, departments, and offices have slightly 
different procedures for creating compartments (as we define them here, whatever else they may 
call them), for deciding exactly what a person granted access is to be told and agrees to, who has 
to approve the creation of the compartment and what other administrative information and rules go 
along with it. 

The question of whether C2 or Bl is "good enough" to enforce com part men tat ion then hinges 
on what the purpose of having compartments is and whether a C2 or Bl system sufficiently ensures 
that that purpose will not be thwarted. 

Why is Compartmentation Used? 

(or, Why Create a New Compartment?) 

"Need-to-Know" 

The first reason for having compartmentation is the "traditional" reason for 
need-to-know: to reduce the number of people routinely exposed to a given body of information. 
Three related purposes for this cautious approach come to mind: 

Damage Limitation: to reduce the damage done by the bad guy who has slipped through the 
personnel security net, either as a mole or as someone who has been turned or duped5. 

Temptation: to reduce the chances that an ordinary cleared person (loyal, average, subject 
to the vicissitudes of normal life) will be tempted to abuse (inadvertently release, 
consciously try to sell or trade for gain, advantage, or to make a point) sensitive 
information which he just happens to have access to — the more classified 
information one sees, the greater the likelihood of running across something that 
proves just too tempting. 

Attractiveness: to reduce the attractiveness of any single individual as an intelligence 
target — the less information a person has ready access to, the less worthwhile 
it is to take the risk of attempting to turn or exploit that person. 

Other Purposes of Compartmentation 

The above three reasons seem the same for ordinary need-to-know ("Can I see it?" "Yes, I 
like the color of your eyes and you seem to know something about this problem, so, go ahead") and 
compartmentation.  (Remember that in most organizational security policies "need-to-know" is 

formal access approval for it To an outsider this may make the "mandatoriness" of a compartment label seem less "mandatory," 
but it isn't the President can release any secret he likes to anyone he wants. The general rule still is that if I have 
possession of compartmented information I can only give it to someone else who is approved for all of its compartments; the rule 
in practice is just more complicated: in the national interest there are some people who are authorized to ignore the general 
rule on a case-by-case basis. 

Since we are for the most part not talking about field or tactical situations we are mostly ignoring the physical capture 
or over-run problem. Situations where those risks are present provide especially strong reasons for wanting damage limitation 
through compartmentation: capturing an agent can't roll-up the entire network. Note that over-run does have a direct relation 
to computers (what information can a person at a captured site be induced to continue to access) as well as a good indirect 
analogy (if the person is metaphorically over-run by a malicious program, what can it access using his authority?) 

450 



supposed to be exercised over ordinary non-compartmented classified information: a possessor of 
classified information is supposed to release it to someone else, no matter what clearance they 
have, only after deciding on some rational basis that the recipient has a legitimate need to 
access the information. The difficulty is in deciding what needs are legitimate and which aren't. 
The three reasons given above seem to be why this is done.) Compartmentation, in addition to 
perhaps making some of the above easier to accomplish, appears to be employed for the following 
further reasons: (note that deciding to create a new compartment or even declaring that a given 
piece of information falls within an existing compartment are not actions to be taken lightly: 
both entail considerable work and impose a burden on potential users of the information. That 
work and burden are presumably only incurred because the act of compartmenting a piece of 
information has some significant benefit above and beyond the mere fact of classifying it.) 

Damage Assessment: to make it easier to make a damage assessment. Assuming all the 
controls are sufficiently effective, once someone has turned traitor it is in 
principle easier to limit the scope of the investigation to only those compartments 
that he had access to. This is in far contrast to having to determine exactly which 
of all, say, SECRET information one actually accessed — the effectiveness of an 
investigation of the latter assumes the manual and electronic audit trails work and 
give meaningful information, which is probably not a realistic assumption. (Most 
TCSEC audit trails are useless: suppose I browsed a SECRET classified forum on a 
Multics system with "pr -text /SDI/"6 — the audit trail would, I think, show 
that I looked at the whole forum, and not just those entries dealing with SDI.) 

Awareness: to lesson inadvertent, inappropriate, or unwise disclosure by making the 
individual more aware of the consequences of that disclosure through the 
indoctrination briefing7. It is not clear, however, that this offsets the risk 
posed by exposing information in the briefing that might not otherwise need to be 
known, including that which identifies why the information is important (and thus 
tempting.)   That balance has to be tough for the policy-setters to make. 

True Segregation: to make it easier to implement what has been called "anti-aggregation." 
I am told there are cases where information of type A or of type B by itself is of 
"ordinary" sensitivity (e.g, SCI) but that the combination of the two is so much 
more sensitive that the number and kind of people who have access to both must be 
specially controlled, even though the number and kinds who have access to either one 
by itself isn't particularly sensitive (in the normal course of events). I 
understand there are cases where the aggregate is not labelled AB but in fact is 
placed in an entirely new compartment, say, C (that might even be the normal way of 
dealing with the situation). Formal compartmentation .makes it possible to bookkeep 
what combinations of accesses like this any given person has and thus prevent this 
particular kind of aggregation problem. 

Neutrality: to lessen the risk in granting access to classified information by taking into 
consideration more factors than a generic clearance or background investigation 
would, in particular, factors specific to the particular kind of information 
involved. ("Do or don't give Jews access to information about/from Israel;" 
"Only give scientific information to someone with an advanced degree in a relevant 

print all entries whose text contains the string SDI." 

7 
The briefing may include much more than that strictly necessary for security awareness; it is only the security awareness 

part we are talking about here.    It may even be that the security implications are self-evident, especially in the context of a 
sub-compartment of some umbrella compartment, so that there really is no security awareness briefing per se. 

451 



subject") This is subject to the "jury of one's peers" phenomenon: is it better 
to have expert or interested parties involved or not? Would you rather have a Jew 
(of what kind?) on the Israeli or Arabian desk or not (assuming he were convinced 
our interests and Israel's were not in conflict?) In any case, compartmentation 
gives the knowledgeable, concerned, and responsible parties (e.g., an Office of 
Primary Interest) the option of establishing additional conditions, either ahead of 
time or ad hoc, for the granting of access, such conditions reflecting the nature of 
the information involved as well as any other relevant information. Ordinary 
"need-to-know" cannot do so since there is no readily enforceable mechanism for 
ensuring that the person responsible for granting or denying access knows what 
considerations other than those included with or implied by the information itself 
ought to be examined. Note that the purpose here is not to institute extensive 
further background investigation procedures to ensure that the candidate for access 
approval is not in fact an agent of a hostile intelligence service, but merely to 
make prudent judgments to avoid humanly irresistible temptations and biases that 
might surface in themselves or be exploitable by a hostile intelligence service. 

Judgement: to make it clearer to the people involved what improper access would be, i.e., 
who really has or should have "need-to-know". Anyone handling compartmented 
information knows that it is at least improper to give such information to someone 
who does not have formal access approval for it; someone handling ordinary 
non-compartmented information has only his own experience, training, and 
instructions to rely upon — there is no independent, external, authoritative 
source he can rely upon to help him decide who, once they have the necessary 
national clearance, should have "need-to-know." Given proper initial 
indoctrination, crossing compartment boundaries could show up on a polygraph (and 
this potential consequence would be made known as part of the indoctrination) but no 
such impediment could be made to stick with ordinary need-to-know, even with the 
polygraph. 

Human Error: to lessen the chances that someone will inadvertently not follow proper 
security discipline; this is not strictly a property of compartmentation per se, 
although the presence of formal labels helps, but is, in this discussion, more 
related to what a computer system does to help the honest person be honest. 

Management: it appears that in some (perhaps many) cases the concept of compartment, as 
used here, is nearly equivalent to that of a "project," where the latter is used 
here (informally) to refer simply to some kind of formally identified and managed 
activity, either a sensitive design effort, collection effort, analysis effort, or 
covert operation. ("Program," "study," "operation," etc. are other similar 
terms.) In such cases the concept of compartmentation is sometimes used in a 
variety of ways as a means of management control only indirectly related to the 
problem of controlling information about or from the project. Funding actions, 
management records, chains of authority (who can release information; who can 
authorize particular activities) may all be tied to the "project" in a manner 
that has security implications (especially when "security" is used in its broad 
meaning as encompassing confidentiality, integrity, and availability). 

Threat Model and Vulnerability Assumptions 

In a compartmented mode system there are two potential threat sources: all authorized users 
of the system and external agents of a hostile intelligence service (HIS). The authorized users 
would in most agencies and departments of the intelligence community in fact uniformly have a 
clearance that is even higher than the minimum required by DCID 1/14. 

452 



An authorized user can become an actual threat either by accidentally releasing information 
or performing some insecure action or by deliberately having become the witting or unwitting agent 
of an HIS. Although the likelihood of the deliberate threat by an authorized user is rendered 
extremely low by the personnel security practices of the intelligence community, it is non-zero, 
and increases as the number of users on a system increases. An authorized user who becomes a 
threat can either compromise security directly by releasing information he has access to or 
indirectly by finding and exploiting a security vulnerability in the system. In a C2 or Bl system 
it is essentially certain that there is at least one easily-found and exploited vulnerability8 

that would permit a malicious authorized user to have undetected access to all information in the 
system9, regardless of what compartments it is in and what access approvals he has; it is for this 
reason that a C2 or Bl system does not help achieve many of the goals of compartmentation since 
any boundaries between compartments supposedly put in place by such a system are easily 
circumvented. 

An external agent of a HIS can become a direct technical threat to a system by introducing 
malicious software or even hardware into the system. Such hostile system components could be 
inserted at several points of an information system. These components could then adversely 
affect the correct usage of the system without the knowledge of the authorized user. On any 
large system it must be assumed that a well-intentioned HIS would be successful in introducing 
such a malicious capability, although it might take time and patience. This is because large 
portions of a system, whether they be the operating system itself, commercially-available 
application packages (such as a data management system), or convenient utilities are written, 
maintained, and delivered by uncleared people through insecure channels. Any such malicious 
software operates with all the privileges of its user(s) and hence on a C2 or Bl system would also 
be able to access any information in the system (exploiting the vulnerabilities mentioned above.) 
The only additional facility such an attack would require is some means of getting the information 
the malicious software has accessed out of the system (since we are assuming in discussing 
external threats that all users continue to be trustworthy.) Since most intelligence community 
systems have some connection to the outside world (direct or via other systems), if only through 
nominally secure "message" systems handling unclassified traffic, or produce some nominally 
unclassified output, there is almost certain to be some means by which a malicious program can 
signal classified information out of the system hidden in what appears to be unclassified output 
or communications. 

Although a B2 system is not assured to be completely without an exploitable flaw, including 
exploitable covert channels, the likelihood of them, and of being able to successfully introduce a 
malicious program that exploits them, is much less than in a C2 or Bl system. It is also the case 
that in order to compromise all of the information in a B2 system,the HIS would either have to 
introduce malicious code into the operating system itself or into enough programs, or popular 
enough programs, that the code is run by at least one user cleared for each compartment; this is 
likely much harder to accomplish than the task on a C2 or Bl system where all that has to be done 
is to get the malicious code somewhere that at least one user, any user, executes it. A corollary 
of this is that if the HIS is targeting a specific compartment (e.g., project) on a given B2 

Q 
All such systems arc vulnerable to Trojan Horses: programs, or possibly even malicious hardware, run by authorized users 

that unknown to their user attempt to bypass security controls, either by giving improper access (on a C2 system) or by 
exploiting covert channels (on a Bl system.) In addition, since C2 and Bl systems have little rigorous attention paid to design 
and implementation correctness, they are almost certain to simply have protection flaws that can be directly or indirectly used 
to permit unauthorized access to information by a technically knowledgeable person (or one acting under the direction of one, or 
running a malicious program written by one.) 

9 See the Appendix for a justification of this characterization of the Bl level of trust 

453 



system it must insert malicious software in such a place that someone having access to that 
compartment will execute it — not any user will do, in contrast to a C2 or Bl system. 

C2 vs. Bl vs. B2 

Given the above ten goals of compartmentation, Table I below indicates which of the 
evaluation classes C2 through B2 help significantly to accomplish that goal in the face of the 
postulated threats. In the table "yes" indicates that the given level of system significantly 
helps accomplish the goal, "no", that it does not. N/A ("not applicable") means that that 
particular purpose of compartmentation is not something that a computer protection system can 
help much with.      Notes on some of the table entries follow it. 

TABLE I 

Ability of "Trusted Systems" to Accomplish Compartmentation Goals 

C2 Bl B2 

Damage Limitation no no yes 
Temptation yes yes yes 
Attractiveness (1) no no yes 
Damage Assessment no no yes 
Awareness (2) N/A N/A N/A 
True Segregation (3) no no yes 
Neutrality (4) N/A N/A N/A 
Judgement N/A N/A N/A 
Human Error (5) no yes yes 
Management (6) no no yes 

(1) A technically sophisticated hostile intelligence service would realize that anyone, or any 
program they ran, on either a C2 or Bl system could have access to all information on the 
system, perhaps given some technical help. 

(2) The presence of system-enforced labels (occurring only on Bl or higher systems) does not 
seem to make a lot of difference here, although its perceived intrusion into previously 
routine operations would constantly remind someone of his responsibilities. 

(3) The assumption here is that one is not especially concerned about temptation but whether a 
person, or a program he has run, has in fact been improperly granted access to the 
aggregate; a B2 system would be much better than a Bl system in ensuring that someone 
granted access to part of an aggregate (compartment "A"), or any programs he ran, did not 
have access to the rest (compartment "B"). 

(4) On the assumption that we are not attempting to weed out a priori malicious people, but 
rather simply to eliminate those who might be subject to unbearable pressures by virtue of 
the kind of information involved. 

(5) A common occurrence, unfortunately, in a computer system, especially one tied to an 
electronic mail system, is accidentally sending information or a message to the wrong 
person. A Bl or B2 system at least prevents information from accidentally going to someone 
without formal access approval for it; a C2 system does not. 

454 



(6) Unless the B2 system implemented some form of rigorous (mandatory) integrity controls, the 
primary reason a B2 system would help with this goal and a Bl or C2 would not is that the 
core of a B2 system must be built to be more robust than that of a Bl or C2 and hence 
would be less vulnerable to malicious attempts inspired by a HIS to subvert management 
wishes. In short, if one believes routine data processing helps with project management 
and control, no additional benefit is gained by having a Q or Bl system, rather than an 
unrated system, but having a B2 system does bring additional help in defending against 
deliberate attempts to thwart that management (either by authorized but malicious users or 
by software introduced from outside). A B2 system with rigorous integrity controls would 
in addition directly provide strong assurance that data (information in a data base, 
historical records, management directives and commands) could not be created or altered by 
unauthorized people or programs. A particularly insidious threat would be a malicious 
program that slowly and gradually "eroded" information over time, at a slow enough 
"rate" that it would not be routinely noticed; a B2 system would impose serious barriers 
to the extent of damage such a malicious program could cause by limiting its scope of 
activity to only those projects its users were authorized to change information in. 

Conclusions 

Where angels fear .... Of all the reasons for compartmentation for which the level of 
evaluation seems to matter, a C2 system helps with only one, a Bl with two, and a B2 with seven. 
If one were to live with only a Bl system one would have the following vulnerabilities to 
unauthorized disclosure not found if one were on a B2 or higher system: 

• all users could be assumed by a hostile intelligence service to have reasonably easy 
access to all information on the system, perhaps given some guidance, regardless of 
what security level or compartment the information had, and thus all would be equal 
(and attractive) targets, either directly or by virtue of the programs they used. 

• once a user were turned, either as a walk-in, target, or mole, he would have 
reasonably easy access to all information on the system, regardless of what security 
level or compartment the information had and thus any turned user could be assumed 
to be able to extract anything of interest. Any malicious programs introduced into 
the system must be assumed to be able to access all information in the system. 

• sets of information which were supposed to be kept separated because their 
aggregation, conjunction, or juxtaposition would lead to grave consequences could 
not be assumed to be so separated once someone having access to any one of the 
sets turned sour, or once any such person had executed a malicious program. 

• once a user is suspected or known to have turned bad, especially under the tutelage 
of a technically competent hostile intelligence service, it cannot be assumed that 
the only information he had access to and compromised is that which he had been 
given tickets for. Similarly, if a malicious program were discovered, even if it 
were known (or reasonably assumed) which users were likely to have run the program 
one could not assume that the only information it could have compromised was that 
for which the user had legitimate access. 

Note that in most of the above the term "user" or "person" can almost always be 
replaced by the term "system" in a networking context. It must generally be assumed that in a 
C2 or Bl system anything any one of its users (or programs they run) can do, can be done by any 
other user (or program he runs), and this includes any actions that might be taken on behalf of 
that user (or programs he runs) on some other system it is connected to.    This means that the 

455 



potential threats to a system include not only all its authorized users, or means by which 
malicious software might be introduced to it that they could be induced to run, but also all 
users (and their programs) in any C2 or Bl systems to which it is connected10. 

It's not for us mere mortals not privy to various higher matters of state to make policy, 
but it sure seems based on the above that running a compartmented mode system on only a Bl base is 
on pretty shaky ground: the only thing you gain over a C2 system, which in itself only serves to 
limit the scope of innocent or ambitious browsing, is preventing human errors. If there is any 
reason to believe that one is the target of a hostile intelligence service, or that any of one's 
technically competent users have any reason to believe they have something financial, moral, or 
political to gain by dealing with such a service, or other entity operating at cross-purposes to 
the interest of the U.S. Intelligence Community, one has to insist on B2 as soon as possible. 

Acknowledgements 

This note has been in various stages of preparation since late 1989. Before being 
submitted to this conference it was informally reviewed by a number of colleagues, all of whom 
shall remain anonymous since some requested to be. They, as well as the conference referees, made 
many useful suggestions, including the final version of the title, that have been incorporated and 
for which I am grateful. One of the conference referees urged that the scope of the paper be 
broadened to include a similar analysis of why Bl should not even be used in limited multi-level 
mode either, even though that is permitted for a risk range of CONFIDENTIAL to SECRET. I agree 
with the sentiment but have to reject the suggestion, both because of the lack of time and because 
on first glance I don't believe the argument, one way or the other, can be made as clearly as it 
can here. 

References 

[1] DCI Security Committee, "Security Manual for Uniform Protection of Intelligence Processed 
in Automated Information Systems and Networks" (U), supplement to Director of Central 
Intelligence Directive 1/16, 19 July 1988. (SECRET REL SEL FORN GOV) — all portions 
quoted, referenced, alluded to, or paraphrased in this paper are of course to sections, 
paragraphs, or tables explicitly marked as UNCLASSIFIED. 

[2] DCI Security Committee, "Minimum Personnel Security Standards and Procedures Governing 
Eligibility for Access to Sensitive Compartmented Information," Director of Central 
Intelligence Directive 1/14, 13 May 1976 (UNCLASSIFIED) 

[3] DoD Computer Security Center, "Computer Security Requirements — Guidelines for Applying 
the Department of Defense Trusted Computer System Evaluation Criteria in Specific 
Environments,"   CSC-STD-003-85,  25 June  1985. 

[4] James P. Anderson,' 'An Approach to Identification of Minimum TCB Requirements for Various 
Threat/Risk Environments," Proceedings of the 1983 Symposium on Security and Privacy, 
Oakland, Cal., IEEE Computer Society, April 25-27, 1983, pp. 102-104. 

[5] Department of Defense, "Security Requirements for Automated Information Systems", DoD 
Directive 5200.28, March 21, 1988. 

This note is already getting too  long to amplify on  this topic; suffice it to say  that networking, even  to a  "small' 
extent, greatly expands the threat sources and means of exploitation of vulnerabilities. 

456 



[6]      Department of Defense, "Automated Information Systems," Industrial Security     Manual 
for    Safeguarding   Classified   Information,   Chapter   8, DoD 5220.22-M, January 1991. 

[7]      G.H. Nibaldi, "Proposed Technical Evaluation Criteria for Trusted Computer Systems," 
M79-225, Mitre Corporation, Bedford, Mass., 25 October 1979. 

[8]      A.-M. Discepolo, "Proposed Technical Evaluation Criteria for Trusted Computer Systems", 
Mitre Corporation, Bedford, Mass., MTR-8481, 30 September 1981. 

[9]      DoD Computer Security Center,' 'Trusted Computer System Evaluation Criteria,'' (DRAFT), 24 
May 1982. 

[10]    DoD Computer Security Center, "Trusted Computer System Evaluation Criteria," (DRAFT), 15 
November 1982. 

[11]     R. R. Schell, "Evaluating Security Properties of Computer Systems," Proceedings   of  the 
1983   Symposium on Security and Privacy, IEEE, April 25-27, Oakland, Cal., pp. 89 - 95. 

[12]     D.J. Edwards, "Trusted Computer System Criteria: Classes Bl Through B3," Proceedings of 
the Sixth Seminar on the DoD Computer Security Initiative, National Bureau of Standards, 
Gaithersburg, Md., November 15-17, 1983, pp. 24-26. 

Appendix 

In Defense of the Bl Characterization Given Here 

It is with some trepidation that I have included in this note a specific subjective 
characterization of "how good" a C2 or Bl system is since it can, not unreasonably, be taken as 
denigrating the hard work of all those who have produced Bl systems, including the several vendors 
involved in the DIA CMW project. Although I believe very strongly that the notion that a Bl 
system is not much more than "C2 with training wheels" has been generally accepted within the 
computer security community for a long time, try as I might I have (perhaps not surprisingly) been 
unable to find any professional or official writing that has stepped out and said so. Neither 
Schell [11] nor Edwards [12], the earliest formally published descriptions of the evaluation 
classes and levels, subjectively characterizes them in terms of ease of penetration, although 
Edwards' description of Bl contains a hint of the difference between C2 and Bl in a summary: "The 
big change at level Bl is the introduction of a mandatory security policy and supporting 
information sensitivity labels .... we are seeking a computing cultural revolution by making 
sensitivity labels an important, user visible part of the computer system." [12, p. 25] The 
closest to an authoritative reference I have been able to find is in the 1979, 1981, and 1982 
precursors to the TCSEC: 

"Although extensively tested, a level 2 system [the precursor of Bl] is still subject to 
design and coding errors. Testing should detect any obvious flaws; yet subtle ones might 
linger, to the advantage of untrusted users who are in a position to exploit them." [7, p. 
25] 

"A level 2 system, like a Level 1 system, is intended for a generally benign 
environment... [it] would be suitable for DoD system high mode of operation." [8, p. 32] 

"A class <B1> system provides nominal mandatory... access limitations ...." [9] 

457 



"A class (Bl) system provides ostensible mandatory... access limitations ...." [10] 

In trying to track down the origin of the "training wheels" characterization I have 
received anecdotal evidence that Dan Edwards first used the term in that context in the summer of 
1983, but no-one has been able to find it in writing. There is considerable additional private 
and semi-private evidence, some in the form of contemporaneous messages and letters, some as later 
recollections, attesting to the fact that the *-property was included in Bl (at the same time as 
what is known as the "simple security property") primarily to get applications programmers and 
system developers used to the constraints that would be imposed on them were they to move to a 
system that had credible assurances, but that too never showed up in any formal publication. 

Finally, a fairly long attempt to characterize Bl in terms of what could and could not 
reasonably be expected of it was entered in the "Criteria" forum on the NCSC DOCKMASTER system 
in April 1987. Following is an abridgement of that entry: 

"...a Bl system is not expected to be able to enforce access controls in the face 
of any conscious competent technical effort to defeat them. ... A Bl system also cannot 
be expected to defend against all Trojan Horse attacks since it almost certainly 
will have covert storage channels and may even have direct channels through system objects 
not controlled by the TCB. ... It has not been subject to protracted penetration 
testing and based on past experience would succumb to a moderate (less than six 
man-months) attack by someone who has the opportunity and background to study the source 
code of the system. Although all known design or implementation flaws have been 
corrected, there has been no systematic effort to search for others (e.g., 
time-of-check-to-time-of-use on system calls.) There is no effective assurance that 
bugs, patches, or trapdoors have not been or cannot be implanted in the system during 
its manufacture or distribution." 

Some 175 people eventually are recorded as having read that entry. A follow-up entry a 
few weeks later, which also was recorded as having been read by roughly the same number of people, 
drew the readers' attention to the fact that there had been no response to the characterization. 
As of this writing, there still has been no objection, which is part of the reason that I believe 
the characterization is accepted as fairly expressing the opinion of the computer security 
community11. 

After this paper had been submitted for the conference an entry was posted in the NCSC DOCKMASTER "Trusted Product 
Evaluation Program Process Improvement" forum specifically addressing the issue of how good C2 and Bl systems are. 
(TPEP_Process_Improvement forum entry [0023], 5/18/92.) I do not know if the author wants his remarks attributed publicly, and 
forgot to ask before the revision deadline, so here they are without attribution: 

"As to C2 and Bl, they are far too costly to develop/evaluate. We add process and meaningless steps such as design 
documentation to systems that are fundamentally bug-prone monoliths. Because that's what the systems are, the added 
effort results in no added security; C2 systems and Bl's are about as secure as anticipated 8-9 years ago, but vastly 
more costly to develop     Bl is no worse than C2 but no better.    Bl, by the way, was intended as "training wheels" 
for application developers who would develop to live with the * -property then transparently port their applications to B2 
and above." 

98 people, including several builders of Bl and 02 products, have read the entry and there have been no objections. 

458 



OPERATING SYSTEM SUPPORT FOR TRUSTED APPLICATIONS 

Richard Graubart* 

The MITRE Corporation 
Burlington Road 

Bedford, MA 
01730 

ABSTRACT 

Trusted operating systems are finally becoming commercially available. But it is the user 
applications executing on trusted operating systems that actually address users' operational needs. 
To provide effective security, these applications often must be able to draw on the security features 
of the trusted operating systems, and the trusted operating systems must be able to provide certain 
security capabilities to the applications.   In general, very little work has been done in the area of 
determining what security capabilities are required of a trusted operating system to support trusted 
applications. This paper provides some suggestions regarding how trusted operating systems 
could better support trusted applications. 

INTRODUCTION 

Trusted systems, in particular those that can operate in multilevel or compartmented mode, have 
recently started to become commercially available. Trusted applications, such as trusted mailers, 
trusted editors, and trusted Database Management Systems (DBMSs), are also being developed. 
Trusted application technology lags somewhat behind trusted operating system technology, if only 
because trusted operating systems are required to serve as a base for the trusted applications. 

The design and implementation of trusted applications does not merely entail selecting arbitrary 
applications, placing them on a trusted operating system, and watching them operate correctly. 
The applications must be carefully integrated into the trusted environment provided by the 
operating system. For its part, the operating system must provide certain security capabilities to 
support the trusted applications. In general, very little work has been done in the area of 
determining what security capabilities are required of trusted operating systems to support trusted 
applications. Documents such as the Trusted Computer Security Evaluation Criteria (TCSEC) 
[DOD85] do mandate certain minimum requirements on trusted operating systems. However, 
these are requirements for ensuring that the trusted operating system is secure. Trusted operating 
systems can be built that are in compliance with the TCSEC, but still do not necessarily provide the 
necessary security capabilities needed by a trusted application. 

The purpose of this paper is to provide some insight and suggestions as to what security 
capabilities could be incorporated into trusted operating systems that would make them a better 
base for trusted applications. 

* This paper represents the views of the author, not necessarily those of the MITRE Corporation. 

459 



TRUSTED APPLICATIONS:   WHAT ARE THEY AND WHY ARE THEY? 

Before discussing the operating system needs of trusted applications, we need to discuss exactly 
what we mean when we refer to trusted applications. By an application we mean a set of software 
that performs some specific set of functions (e.g., a DBMS, a mailer, etc.) for the purposes of 
addressing some specific problem (the need to interrelate data, the need to pass information 
between users, etc.). A trusted application is one that performs some specific security task while 
satisfying a needed operational function. We do not consider an application trusted if its security 
functionality is performed entirely by the underlying operating system. For our purposes an 
application is considered trusted only if the application itself performs some security related 
function. The nature of the security functionality performed by the trusted application can vary; it 
can be access control, it can be labeling information, it can provide some supplemental 
authentication capability, etc. 

Trusted applications are required when the operational needs of the application cannot be 
accomplished (at all) or cannot be accomplished securely even with the support of the trusted 
operating system. As an example, a DBMS may require labeling and mandatory access control 
(MAC) at a level of granularity not provided by the underlying operating system. To satisfy this 
need, a trusted DBMS may be required which will enforce labeling and MAC at a granularity finer 
than that of the operating system. 

For trusted applications to perform their tasks it may be necessary for the application to override 
some policy of the underlying operating system. As an example, a trusted DBMS may need to 
support its own MAC and labeling policies on the objects under its control. The labeling or access 
control decisions performed by the trusted DBMS would be independent of the access mediation 
provided by the trusted operating system. In order for the application to perform, such actions 
require some privilege or set of privileges from the underlying operating system that allow it to 
operate independently of some of the policies enforced by the operating system. Continuing with 
the example, a trusted DBMS may require a Violate-M'AC'-Policy privilege, or a Relabel-Data 
privilege in order to label data records and perform access control on the records. 

Not all trusted applications require privileges, only those whose task requires them to override the 
policy of the underlying operating system. Some applications may enforce a policy that is 
orthogonal to that of the underlying operating system. For example, a trusted DBMS could exist 
that does not enforce any MAC or labeling, but does enforce some entity integrity policy.'   Such a 
policy is independent of the policies enforced by the underlying operating system. 

Thus, trusted applications are required when a particular problem needs to be addressed in a secure 
manner, and for some reason the application cannot rely on the underlying operating system to 
provide the necessary security support. As noted above, there are different types of trusted 
applications. Some trusted applications need to override the policy of the underlying operating 
system, others enforce policies that are completely independent of those of the operating system. 
Some trusted applications both override some policy of the underlying operating system, and also 
enforce some policy that is orthogonal to those policies enforced by the underlying operating 
system. In the next section we discuss features that, if incorporated into the underlying operating 
system, would make the implementation of trusted applications easier. Most of the proposals are 
directed at supporting applications which override the policy of the underlying operating system. 

1 Such a policy would allow the DBMS to enforce constraints on what data values could be 
inserted in a given field. As an example, it would ensure that in a salary field no negative 
salaries may be inserted. 

460 



This is because we believe these types of trusted applications to be the most common type of 
trusted applications, and the ones for which operating system support is the most needed. 
However, some of the suggestions can lend themselves to both types of trusted applications. 

NEEDED OPERATING SYSTEM SUPPORT FOR TRUSTED APPLICATIONS 

There are a variety of ways for a trusted operating system to provide support for trusted 
applications. One possible way is for the operating system to provide some security capability that 
the trusted application depends upon to successfully carry out its mission. 

Another way is for the operating system to provide support that will help limit the possible 
complexity of the trusted application. If the trusted operating system provides a needed trusted 
capability, and does so in a manner that is highly flexible, then this may eliminate the need for the 
trusted application to provide the trusted capability on its own. This would limit the complexity of 
the trusted application, and in so doing likely lessen the cost of the application and speed up its 
development time. 

Finally, it must be noted that those trusted applications which implement policies that are not 
independent of the underlying operating system have the potential of interfering with the operations 
of the underlying operating system. Not only must such trusted applications be scrutinized, but 
because of the possibility that the applications may interfere with the underlying trusted operating 
system, the operating system itself may need to be reevaluated. Such reevaluation is time 
consuming. In addition, it undercuts the utility of employing evaluated trusted operating systems, 
as the already evaluated operating system may require reevaluation even when no changes have 
been made to the operating system itself. If the operating system could be designed in some way 
that would lessen or eliminate the need to reevaluate it when used in conjunction with a trusted 
application, this would further support trusted applications. 

In the remainder of this section we describe some possible enhancements to trusted operating 
systems, all of which we believe in one way or another provide support for the use of trusted 
applications. 

SUPPORT FOR TRUSTED PATH 

Many trusted applications need to be able to communicate with a user in a manner that clearly and 
unambiguously indicates that the user is interacting with the trusted application and not some 
untrusted software. The traditional means of establishing such communications is via a trusted 
path. It is not desirable for the trusted application to provide the trusted path on its own. Trusted 
paths often require some control of the hardware, and only the underlying trusted operating system 
should have access to the hardware. Therefore, what is needed is for the underlying operating 
system to make its trusted path mechanism2 available to the trusted application. This would allow 
the trusted application to connect its trusted path mechanism with that of the underlying operating 
system, thus ensuring an unbroken, unspoofable trusted path from the user to the TCB. 

This trusted path should be bidirectional, that is, either the user or the trusted application should be 
able to invoke it. A primary reason why the trusted path needs to be bidirectional is to 
accommodate the highly interactive, real-time operations of many trusted applications. As an 
example, it is possible to have a DBMS environment where a user issues a query, then performs 
some other action while waiting for the TDBMS to respond to the query.   When the TDBMS does 
respond, it is important for the user to know that the response has come from the TDBMS, not 

The TCSEC requires a trusted path for systems at B2 or higher. 

461 



some untrusted code that is attempting to spoof the user. Having the TDBMS be able to invoke the 
trusted path provides a means of ensuring the user that the communication did indeed come from 
the trusted DBMS. 

The operating system trusted path could be made available to the trusted application via system 
calls or library routines. For additional control, only appropriately privileged trusted applications 
would be allowed to utilize these system calls or library routines. Note that none of these 
proposals (use of library routine or systems calls, use of privileges, bidirectional trusted paths) is 
beyond the current state-of-the-art. Nor do any of these proposals conflict with the requirements 
of the various security metrics (e.g., the TCSEC).   However, because these capabilities are 
generally not called for in the various security metrics,3 most trusted operating systems do not 
include these capabilities. 

IMPROVED PRIVILEGE SUPPORT 

As noted earlier, in order to perform their functions, many trusted applications require some 
privilege from the underlying operating system. We propose that the privileges provided by the 
operating system should be at as fine a granularity as possible. The use of fine granularity of 
privilege is consistent with the TCSEC concept of least privilege.4   In addition, we believe that the 
use of fine-grained privilege may help minimize the reevaluation of the underlying operating 
system. For example, if a system only supports a single 'super-user' privilege that overrides all of 
the underlying operating system policies, then an application that only requires the ability to write 
to the operating system audit trail will be given the ability to override the underlying MAC, and 
Discretionary Access Control (DAC) policies, as well as the ability to override the system audit 
policy. Such action clearly violates the concept of least privilege. In addition, the entire operating 
system must be reexamined to ensure that it works properly in conjunction with the trusted 
application. But, if the underlying operating system supports a Generate Audit Data Privilege, then 
only that part of the operating system responsible for enforcement of audit policy would need to be 
reexamined. 

It is very difficult to define what is the appropriate minimum set of privileges that an operating 
system should enforce without adversely impacting the ingenuity and flexibility of the operating 
system vendor. However, wherever possible, the operating system should enforce as fine a 
granularity of privilege as possible (many trusted operating systems already provide a very fine 
granularity of privilege). The set of privileges provided by a trusted operating system should take 
into account likely requirements of trusted applications. The choice of privileges should also take 
into account the requirements against which the operating system will be evaluated. At a 
minimum, privileges should not cross policy boundaries. In addition, within a given policy, 
vendors should attempt to ensure that capabilities that map to different requirements should not 
couple together in a single privilege |CMWEC|. We believe that such actions, if implemented, 
would not only ensure that privileges conform to the concept of least privilege, but in so doing 
would help minimize the amount of reevaluation required of a trusted operating system. 

3 The Compartmented Mode Workstation Evaluation Criteria, DDS-2600-6243-91 ICMWEC], 
does require the operating system provide a bidirectional trusted path that can be made available 
to trusted applications. 

4 At the B2 level the TCSEC requires the use of least privilege but does not elaborate on the 
concept. 

462 



In addition to supporting fine-grained privileges, operating system support for privilege bracketing 
would also aid trusted applications. Without privilege bracketing, an entire process is granted the 
capabilities associated with a privilege. The use of privilege bracketing constrains where in a 
process a privilege may be employed. As a result, only the code that exists between where a 
privilege is activated and deactivated can employ the privilege. In no other locations within the 
process can the privilege be invoked. Having the operating system provide this capability further 
encapsulates the actions of a trusted application, presumably limiting the amount of the trusted 
application5 that needs to be scrutinized for correct operations and use of privilege. 

ENCAPSULATION OF TRUSTED APPLICATIONS 

One of the issues with incorporating a trusted application with an already evaluated trusted 
operating system is that the trusted application has the potential to interfere with the operations of 
the trusted operating system by applying the privileges it was granted to resources under the 
control of the operating system. For this reason, the addition of a trusted application to an already 
evaluated operating system requires that some portion of the underlying operating system must be 
reevaluated. The use of fine-grained privileges provides some limits on the amount of the 
operating system that needs to be reevaluated. To further limit, and possibly eliminate, such 
reevaluation requires some means of encapsulating the actions of the trusted application so that it 
cannot interfere with the trusted operating system. 

One means of encapsulation is for the trusted operating system to enforce some typing policy and 
associated mechanism. Under such a system the operating system would ensure that all 
applications trusted and untrusted (indeed all subjects and objects) would have some type 
associated with them. Thus, a DBMS (and associated subjects and objects) might have a DBMS 
type associated with it, a Mailer would have a Mail type associated with it, etc. The object typing 
policy would ensure that an application of one type could only access subjects and objects of some 
specified type. Some systems already support such capabilities (LOCK |SAYD87|, 
XTS-2(X) [HFSI92)). The most restrictive variation of this policy would be to ensure that an 
application could only access subjects and objects of the same type. By imposing such 
restrictions, one could ensure that a trusted application could not interfere with the actions of the 
trusted operating system or some other trusted application. 

An encapsulation mechanism as proposed above would constrain which subjects and objects a 
trusted application could access, and, hence, would ensure that trusted applications could not 
interfere with the workings of trusted operating system's trusted applications. This satisfies the 
security concerns but can cause some operational difficulties. Operationally, there will usually be 
some entities of one type that need to be accessed by entities of another type. For example, it is 
likely that most trusted applications will require access to the operating system clock. But, if the 
encapsulation policy is such that an application can only access entities of the same type, then 
trusted applications will be prevented from accessing the clock which would be of a different type. 
An alternative is to enforce a less rigid policy which would allow certain objects to be accessed by 
subjects of specified types or permit specified subjects to access objects of multiple types. The 
difficulty with these alternatives is that they weaken the encapsulation policy, and, therefore, one 
can no longer be ensured that the actions of a trusted application are constrained to only entities of 
its own type. Thus, these more permissive encapsulation policies while allowing greater 
operational flexibility, and greatly reducing how much of an application would need to be re- 
evaluated, would not completely eliminate the need for reevaluation of trusted applications. 

Privilege bracketing is only effective if certain other constraints are taken into account, such as 
prohibition of GOTOs, or self-modifying code in the application. 

463 



LABELING AND MAC CONSISTENCY 

One of the primary reasons for the development of trusted applications is the need to enforce fine 
grained labeling and MAC at a level of granularity finer than that enforced by the operating system. 
Trusted DBMSs often need to label at the tuple or record level, trusted editors may need to label at 
the paragraph level, etc. The granularity provided by the operating systems (e.g., file level) is 
generally not sufficiently fine to satisfy the needs of these trusted applications. Some architectures 
have attempted to address this problem by aligning the objects of the trusted application with that of 
the operating system [DENN87]. Thus, in the case of a DBMS, all of the Secret tuples of a 
relation would be in a Secret file, all of the Top Secret tuples would be in a Top Secret file, etc. 
For many environments this is an acceptable solution. However, for systems which require an 
extremely fine level of granularity and a large number of different security levels, this architectural 
approach may not be optimum. This architectural approach requires the physical partitioning of the 
application objects into multiple operating system objects with the result that logically related 
application objects (e.g., data tuples of the same relation, but of different security levels) are no 
longer in physical proximity. As noted in [GRAU89, GARV89|, this may result in performance 
dropping logarithmically as the number of security levels increases. 

For the performance reasons cited above, many trusted applications often perform their own MAC 
and provide their own label manipulation and label conversion. For some systems these label and 
MAC checks are quite simple and the amount of code involved is relatively small. However, in 
other systems these label checks can be quite complicated. For applications running on these 
systems, duplication of such label and MAC checking code in the application could prove to be 
expensive. In such environments it is quite beneficial if the labeling and MAC checking code is 
made available to the trusted application. This could be accomplished by placing such code in 
library routines or providing appropriate system calls to such code. In either event, the code would 
only be accessible to the appropriately privileged trusted application. Making such code available 
to the trusted application reduces part of the burden on the trusted application, making the 
applications somewhat less complicated and, hence, less expensive to build and evaluate. In 
addition, such an approach also ensures that the applications and the operating system are using 
labels consistently, thus eliminating the need to convert labels when data is passed between the 
operating system and the trusted applications. 

Still, another way that a trusted operating system can relieve some of the labeling and MAC burden 
from a trusted application is for the trusted operating system to provide an arbitrarily fine level of 
labeling granularity (e.g., down to byte).6   By having an operating system provide such fine 
labeling granularity, then the trusted application no longer needs to provide its own labeling, but 
can instead rely on that of the operating system. Because the security granularity could be 
dynamically selected by the trusted application, application objects (e.g., database records, mail 
messages) would not need to be physically partitioned into separate operating system files as 
described earlier. This lack of physical partitioning would mean that system performance would 
not be impacted by the number of required security levels, as is the case when operating system 
granularity is more coarse. Because the trusted application would not need to enforce its own 
labeling or MAC, the cost and complexity of the application would likely be less, and the 
evaluation/certification of the application would be easier than if it had to enforce its own labeling 
an MAC. 

MITRE has enhanced a prototype CMW to provide just such a capability. See | PICC911 for 
further details. 

464 



CONCLUSION 

As discussed above, one can categorize trusted applications into two broad categories: those 
whose actions are independent of the operating system and those whose actions are not 
independent of the operating system. We believe that the vast majority of trusted applications fall 
into the latter category. As we have also noted, there are three possible ways to categorize 
operating system support for a trusted application. There are those enhancements which allow the 
trusted application to perform some action it would not otherwise be possible to occur. There are 
those enhancements which limit the amount of reevaluation that is required of the operating system. 
Finally, there are those enhancements which limit the complexity of the trusted application. The 
enhancements described in this paper cover all of the categories. 

The support for an extendible trusted path is necessary for any trusted application which requires 
an unspoofable connection between it and the user. Note that this enhancement is necessary 
regardless of whether the application is dependent or independent of the policies of the underlying 
trusted operating system. 

As noted above, improved privilege support in the operating system can limit the needed 
reevaluation of the trusted operating system. In addition, the ability to use finer grained privileges, 
and privilege bracketing helps limit the size and complexity of the trusted application by providing 
for clearly designated areas of the application which need privileges and those that do not. Such 
enhancements are clearly intended for those applications which are not independent of the operating 
system, and, hence, can override the security policy of the operating system. 

The use of object typing to encapsulate the actions of the trusted application is intended to limit 
reevaluation of a trusted operating system. The encapsulation enhancements are directed toward 
those applications whose actions are generally not independent of those of the trusted operating 
system. 

The enhancements directed at ensuring labeling and MAC consistency are primarily targeted at 
simplifying the functionality of the trusted application by removing a burden from the application.7 

Such enhancements are clearly directed at applications that are not independent of the actions of the 
trusted operating system. 

It is important to note that there are operating systems currently available that provide many of the 
already mentioned capabilities. Also, the enhancements discussed in this paper, trusted path, 
improved privilege support, the ability to encapsulate the action of trusted applications, providing a 
means to ensure labeling, and MAC consistency between applications and the operating system, 
are enhancements that we believe to be useful for supporting the applications we have studied. 
Other enhancements to the trusted operating system that could support trusted applications are 
likely. The nature of these enhancements will become clearer as we gain greater experience with 
trusted applications. 

7    The enhancements may also limit the need to reevaluate a trusted operating system since there is 
no longer any application MAC that can interfere with the operating system MAC. 

465 



LIST OF REFERENCES 

[CMWEC] Compartmented Mode Workstation Evaluation Criteria Version 1, DDS-2600-6243- 
91, Defense Intelligence Agency, 1991. 

[DENN87] Denning, D., E., et. al., A Multilevel Relational Data Model, 1987 IEEE 
Symposium on Security and Privacy, Oakland, CA, 1987. 

[DOD85] Department of Defense Trusted Computer System Evaluation Criteria, 
December 1985, DOD 5200.28-STD. 

[GARV89] Garvey, C, et. al., 1989, A Layered TCB Implementation vs the Hinke-Schaefer 
Approach, 1989 IFIP Workshop on Database Security, Monterey, CA. 

[GRAU89] Graubart, R. D., 1989, A Comparison of Three Secure DBMS Architectures, 1989 
IFIP Workshop on Database Security, Monterey, CA. 

[HFSI92] HFSI, 1992, XTS-200 Trusted Facility Manual. 

[PICC91] Picciotto, I, and D. F., Vukelich, 1991, Fine Grained Labeling, Volume I: 
Operating System Support, MTP 387, Volume 1, The MITRE Corporation, 
Bedford, MA. 

[SAYD87] Saydjari, O. S., et. al., September 1987, Locking Computers Securely, 
Proceedings, 10th National Computer Security Conference, Baltimore, MD. 

466 



Operational Support of Downgrading in a 
Multi-Level Secure System 

Doug Nelson 
Greg Factor 

Jim Studt 
Mary Yelton 
Steve Heffern 
Frank Kramer 

MLS GDSS Program 
Digital Equipment Corporation 

721 Emerson Rd. 
St. Louis, MO 63141 

Keywords: Downgrade, Multi-level Security, Relational Database 

Point of Contact: Doug Nelson (314)991-6232 

Abstract 

Downgrading is a complex and time-consuming process that is absolutely necessary to operate 
a Multi-Level Secure (MLS) system. This paper describes the requirements and design of a 
Downgrader Utility planned for use in the United States Transportation Command/ Air Mobil- 
ity Command's (USTRANSCOM/AMC) MLS Global Decision Support System (MLS GDSS). 
The Downgrader Utility provides operational support to permit efficient and timely 
downgrading of classified information during execution of AMC missions. 

467 



Introduction 

USTRANSCOM/AMC operates the GDSS command and control system to manage its airfleet 
Currently, AMC operates an unclassified system and a separate classified system, both execut- 
ing the same software. As part of its MLS testbed activity and with the support of NSA, DISA 
and several other Federal agencies, AMC is developing an operational Bl-certifiable MLS sys- 
tem to replace the existing single level GDSS system [1]. The system is targeted for an envi- 
ronment that is hosted on a DEC VAX/Security Enhanced VMS (SE/VMS) system. A Bl- 
targeted relational database managements system (RDBMS) is integrated into the system archi- 
tecture to provide database management services. 

As part of this development effort, requirements for downgrading operations were identified 
and a prototype design developed and implemented. The paper describes these requirements 
and some of the more important design aspects. 

Kev Requirements 

Of the numerous functional requirements that must be satisfied by the prototype, several man- 
agement and presentation requirements had a significant affect on the design and implementa- 
tion of the downgrade utility. These four requirements are: 

• Range of downgrading granularity 

• Transaction integrity 

• Support for polyinstantiation 

• Operational simplicity 

• Audit capabilities 

Scheduling and execution of missions by the MLS GDSS must be performed in a manner that 
provides uncleared individuals with sufficient data to operate, while protecting the mission's 
classified data and preventing inferences about that data. The system accomplishes this, in part, 
by supporting cover stories. In order to limit the understanding of the mission and limit infer- 
ence, fictitious or bogus information that is indistinguishable from real data is entered into the 
system at the unclassified level for uncleared users. Classified information representing the real 
plans of the mission are entered into the system for the secret users, along with some real un- 
classified data necessary to initially schedule the mission. The bogus unclassified data is called 
a cover story and hides the existence and values of secret data while limiting inferences about 
the classified aspects of the mission. 

During the execution phase of the mission, secret data must be downgraded and made available 
to uncleared users in a timely fashion. This downgrading process does not include all classified 
aspects of the mission, but only those portions that are necessary for the uncleared individual to 
perform his/her duties. Through limited downgrading and the use of cover stories, the remain- 
ing secret data is protected from viewing and inference.   For example, consider an aircraft fly- 

468 



ing a classified mission consisting of several stops at various airbases. The uncleared ground 
crews that service the plane after its landing must be made aware that the plane is arriving in 
advance in order to make preparations to service the plane. However, this information need not 
be made known to them until only a short period of time before the aircraft arrives. All other 
aspects of the planes mission, such its cargo or passengers, destination, and departure time re- 
main classified and protected through the use of cover stories. Only when it is absolutely nec- 
essary is secret data downgraded to allow the execution of duties by the uncleared individuals. 

In other cases, it is necessary to be able to downgrade nearly simultaneously a large number of 
classified details about several mission and aircraft operating those missions. This might occur 
during a large exercise or contingency when multiple missions operate together at the same 
time. Thus, the downgrading utility must be capable of downgrading a varying granularity of 
classified data, ranging from a single data element such as arrival time of a mission at a speci- 
fied location through all classified schedule information associated with hundreds of aircraft 
executing a contingency plan. Since the downgrading of classified information is time critical 
during execution, the downgrading utility must be able to operate in a timely fashion to ensure 
that uncleared individuals are made aware of duties they must perform. 

The MLS GDSS makes deliberate use of polyinstantiation to support cover stories to limit in- 
ference[2,3]. In a polyinstantiated database that uses cover stories, the actual process of 
downgrading information involves overwriting of cover story data at the unclassified level with 
data that was stored at the secret level prior to the downgrade. The downgrader utility must 
understand the use of polyinstantiation and cover stories to provide a mechanism to accomplish 
this action in a relational database. 

The MLS GDS System also enforces, through its trusted computing base code extensions, ag- 
gregation rules. These rules control the classification of data elements in relation to the classifi- 
cation level of other associated data elements. The downgrade utility must also support and fol- 
low these same aggregation rules. 

An important requirement for the downgrader utility is the preservation of data integrity within 
the database during the downgrade operation. Since the MLS GDSS system is used by hun- 
dreds of flight controllers and planners simultaneously around the world, it is important that the 
downgrading operation not disrupt the availability of the database, or corrupt the integrity of 
data associated with a particular mission. The actual downgrading of information stored in 
multiple table within the database should occur as a single complete transaction, making the 
new unclassified data set available in a single process. Operationally, it is very important that 
all of the chosen set of secret data to be downgraded become unclassified. Partial downgrading 
could inadvertently disrupt operations and open inference channels to uncleared individuals. 

Design Overview 

The solutions to the requirements identified in the prior section are reviewed and discussed in 
the following paragraphs. The downgrader utility uses trusted computing base extensions of the 
MLS GDSS to access and communicate with the database and to manage and protect sensitive 
data structure and associated labels [3]. In the system, cover stories and data element level la- 
beling are provided through the deliberate use of polyinstantiation. Aggregation rules and clas- 

469 



sification determination are provided by the system and these rules are available to other trusted 
components, including the downgrader utility. Solutions to the downgrade requirements are 
implemented with trusted application software. 

Range of Downgrading Granularity 

The MLS GDSS database is a relational database that has been normalized to handle the over 
1500 data elements that comprise the system. Entity relationship analysis defined the major ob- 
jects stored within the database, along with the clusters of tables that hold the attributes associ- 
ated with the objects. These objects consist of items such as MISSIONS, AIRCRAFT, AIR- 
CREWS, and CARGO. Data structures within the downgrade utility store meta data about the 
tables that hold information about an object and how these tables are interrelated. This meta 
data is used by the downgrader utility to access all data attributes of an object for presentation 
to the user and during the downgrade operation. After viewing the contents of an object or mul- 
tiple collections of related objects, such as all missions associated with an exercise, the user can 
select data elements for downgrading. This selection may entail all downgradeable elements 
associated with an object, such as a mission, or one single element, such as the landing time at a 
specific site for a particular mission. Using meta data, the downgrader utility accesses the data- 
base tables holding the chosen information and downgrades those data elements 

Transaction and Access Integrity 

One of the major drawbacks of existing downgrade capabilities supplied with COTS relational 
database products is the lack of transaction integrity and denial of access to the database objects 
being downgraded. Downgrading in some database products requires the creation by the user 
of additional temporary tables and the movement of classified data from the original tables to 
the the temporary tables. The temporary tables are then downgraded and the unclassified data 
moved back to the original table. During such a process, database integrity and accessibility 
may be compromised. The MLS GDSS downgrader utility performs downgrading operations 
in a manner that resembles other application transactions. The selecting and updating that takes 
place during the operation is done within the context of a single transaction and does not require 
the creation of intermediate tables. 

Polvinstantiation Support 

Downgrading support that exists in most COTS RDBMS products consists of rewriting of the 
security label of the tuple holding the classified data to be downgraded. In a polyinstantiated 
database that uses cover stories like MLS GDSS, this support is insufficient and provides little 
advantage. Downgrading in these products consists of updating the security label column with 
the value that the data is being downgraded to, e.g., UNCLASSIFIED. Unfortunately, this ap- 
proach does not work in a database that makes deliberate use of polyinstantiation as the MLS 
GDSS does. Since the security label column is part of the unique key of the relations in the 
database[2], attempts to rewrite the security label of a polyinstantiated tuple could violate the 
uniqueness of tuples within the table. Instead of modifying the security label column, the 
downgrader utility performs the downgrade operation by updating data elements stored in the 
UNCLASSIFIED tuple with the values stored at the secret level in the SECRET tuple. The se- 

470 



cret values stored in the SECRET tuple are then removed (nulled) or the entire secret tuple is 
deleted. This operation requires the user of the utility to have the downgrade privilege. 

Operational Simplicity 

The primary reason for developing a downgrader utility is to provide the users with downgrade 
privileges with a tool that simplifies their duties and improves the efficiency of using and man- 
aging a system that supports multi-level data. Downgrading information stored in over 1500 
data elements and over 200 tables is a complex task. Without the support of such a utility, the 
downgrader must be intimately familiar with the database schema, as well as the transactions 
that are performed by the application. In many cases, data fields stored within the database are 
not directly visible to the user through application screens. These fields may be used for inter- 
nal controls and specialized functions performed by the application to interrelate data and main- 
tain integrity. Without an understanding of the transactions, the downgrader might inadver- 
tently overlook downgrading these fields, resulting in potential corruption of the database 
integrity. The downgrader utility through its meta data extensions is capable of finding and 
downgrading the appropriate data elements during an operation. 

RDBMS Independence 

The downgrader utility makes use of trusted computing base extensions present in the MLS 
GDSS. Because of this, the utility is relatively independent of the underlying RDBMS product 
It was a design goal of the system to allow adaptation of the utility to future MLS applications 
that may form part of the MLS GDSS. Because the rules describing how to access all the com- 
ponents that make up an object are stored in meta data, extending the utility or modifying the 
utility is a simplified process. This design also reduces the amount of trusted code in the utility. 

Auditing Extensions 

The downgrader utility also provides auditing capabilities that extend beyond those provided by 
most RDBMS products that include downgrading features. One example is the lack of histori- 
cal information captured during a downgrade operation. Most databases are capable of auditing 
the read and write operations that occurred during a downgrade and the tuples that were af- 
fected. However, once data is overwritten or deleted, it is impossible to reconstruct precisely 
what occurred. One of the requirements of the system that the downgrader utility provides is a 
historical view of the downgrade operations. Before and after snapshots of updated and deleted 
data are captured and recorded to an audit file. This permits a auditor to accurately reconstruct 
the data set before and after a downgrade, perhaps aiding analysis of inadvertent downgrades or 
deliberate attempts at disclosure. 

Summary 

This paper has described the requirements and design of a downgrading utility to support an 
operational MLS C2 system.  The utility operates in conjunction with a polyinstantiated data- 

471 



base system that provides data element level labeling and cover stories. Key amongst the re- 
quirements was the ability to provide operational simplicity to aid in downgrading data ranging 
from a single data element to a large collection of related data stored in multiple database tables 
while maintaining data integrity and database access. The utility is designed to take advantage 
of meta data extensions that describe the major database objects and to be independent of any 
particular RDBMS product The utility also is designed to extend the auditing capabilities of 
existing RDBMS products to aid analysis of downgrade activity. Finally, the paper points out 
some of the needs identified in an operational MLS C2 system to permit efficient and simplified 
downgrading to occur. 

References 

[1] S. Doncaster, M. Endsley, and G. Factor, "Rehosting Existing C2 Systems Into An MLS 
Environment", Proceedings from the Sixth Annual Computer Security Applications Confer- 
ence, Tucson, Arizona, 1990. 

[2] T. Lunt, "Polyinstantiation: An Inevitable Part of the Multilevel World", Proceedings of 
the Fourth Workshop on Foundations of Computer Security, Franconia, New Hampshire, 1991. 

[3] D. Nelson and C. Paradise, "Using Polyinstantiation to Develop an MLS Application," Pro- 
ceedings from the Seventh Annual Computer Security Applications Conference, San Antonio, 
Texas, 1991. 

472 



PM: a Unified Automated Deduction Tool for Verification1 

George Fink (gfink@cs.ucdavis.edu) 
Lie Yang (yangl@cs.ucdavis.edu) 

Myla Archer (archer@cs.ucdavis.edu); (916)752-7583 

University of California, Davis 
February, 1992 

Abstract. We are developing a tool called PM (for Proof Manager) that provides flexible support for the use 
of automated deduction in verification by providing a common interface to a variety of existing theorem 
provers. PM works to blend the strengths of these different provers into a proof system more powerful than 
its compenent parts individually. The assertion language of our PM prototype is that of the HOL theorem 
proving system [Gordon87], chosen because it provides a verifier with a very expressive higher-order asser- 
tion language that is especially suited to expressing specifications of complex systems (such as secure distri- 
buted systems) and high level reasoning, but—being essentially a proof checker—is tedious to use for lower 
level assertions that are simple for automatic first-order provers. PM is intended to supplement HOL in a 
sound manner with access to various existing, polished automatic provers. Simultaneously, PM provides a 
verifier with a convenient means of managing and summarizing proofs. 

Keywords: verification, system verification, automated deduction systems 

1. Introduction 

For large verification projects, automated support is essential. In particular, automated support for 
reasoning about the many complex (if not usually deep) formulae generated as verification conditions in 
the process of formal verification is almost a necessity. Being involved in several ongoing hardware and 
software verification projects, we are interested in making this automated reasoning support as general 
and convenient to use as possible. This paper reports on the current status of and future plans for PM 
(Proof Manager), a tool we are developing to achieve this goal. The working prototype of PM is now 
being used in some of our current verification projects. 

One feature provided by PM is an improved interface to an existing theorem proving tool that has 
proven to be appropriate for hardware verification, namely, the HOL (higher-ordcr-logic) system 
developed by Michael Gordon and others at Cambridge University [Gordon87]. The HOL system has 
proved useful in both hardware verification [Cohn88, Joycc88, Win90] and other security applications 
such as the proof of the security kernel of an operating system [A-FL91]. 

The usefulness of HOL for large verification projects is the result of its provision for expressing and 
directly reasoning about higher-order assertions—that is, assertions that are general statements about 
functions. This capability makes the factoring of proofs natural in HOL, and thus can reduce the work 
involved both in individual top-down verification projects and in whole families of similar verification 
efforts. On a lower level, higher-order assertions are a natural way to encode properties of designs whose 
specifications involve the concept of time: e.g., hardware designs that express the relationship between 
values carried on various wires as a function of time. The strength of this temporal abstraction can be 
seen in the following specification of an ALU from [Joyce88]. (Note that in the definition, => and | 
correspond to if-then and else respectively, and the juxtaposition of expressions indicates function appli- 
cation, and finally that the result of function application—e.g., add rep>—can itself be a function.) 

Alu = | - V rep fl f2 inpl inp2 out. Alu rep f inpl inp2 out = 
V t: time, out t = (((ID t.fl t) = (T, T)) => ((inc rep) (inp2 t)) | 

'This research is supported in part by the Department of Defense under contract grant DOD-MDA 904-91 -C-7052. 

473 



((fO t,fl t) = (T, F)) => ((add rep) (inpl t,inp2 t)) | 
((ID t,fl t) = (F, T)) => ((sub rep) (inpl t,inp21)) | 
((wordn rep) 0)) 

While the theorem-proving capabilities (in the sense of the appropriateness of the logic) of the HOL 
system are satisfactory, the standard interface puts a real burden on the system user, limiting access to 
subgoals and leaving details of the creation of a large proof from smaller steps up to the user. The HOL 
interface of PM relieves much of this burden by, for example, making it possible to keep track of steps of 
a proof by associating them with nodes in a proof tree, and in supporting various ways of combining short 
steps into a larger proof while compacting the tree, relieving HOL users of considerable work that would 
otherwise need to be done by hand. 

There are trade-offs to consider in choosing the most appropriate form of support for automated rea- 
soning in large verification efforts. As we have indicated, powerful theorem-proving systems such as 
HOL or Nuprl [Con86] that support higher-order reasoning lend themselves to a particularly straightfor- 
ward formulation of many specifications, and reasoning about these formulations directly, as well as gen- 
eralizing proofs. On the other hand, proofs in such systems as HOL and Nuprl must be guided in detail 
by the user; reusable tactics can be used to some extent, but even so, these tools more resemble proof- 
checkers than automated theorem provers. The tools become particularly frustrating to use when one 
reaches the level of simple lemmas whose proofs would be straightforward and largely automatic if one 
only had on hand, say, a simple resolution provcr, an automatic induction capability, or a linear arithmetic 
decision procedure. To a varying degree, these capabilities can be approximated by special tactics (or by 
auto-tactics in Nuprl), but the approximations are generally either incomplete or less efficient than those 
provided by polished specialized systems. 

Theorem provers with less powerful inference mechanisms, such as resolution provers or the 
Boyer-Moore provcr [BM88] are closer to being automatic provers. Given an appropriately formulated 
valid first-order assertion as input, the Boyer-Moore prover will generally terminate with success or 
failure in finding a proof, and a full resolution prover will either terminate with success or will fail due to 
space considerations. In the following example, taken from [Joyce88], a lemma requiring a complex HOL 
tactic proves in a fraction of a second in the Boyer-Moore prover. In addition to the time taken in gen- 
erating this tactic, HOL takes several seconds to produce a result. 

Original: 
V m n p q. (m < p) A (n < q) => ((m + n) < (p + q)) 

HOL Tactic: 
let thl = SPECL ["m";"p";"n"] LESS_MONO_ADD_EQ in 
let th2 = SPECL ["n";"q";"p"] LESS_MONO_ADD_EQ in 
let sublist = [SPECL ["n";"p"] ADD_SYM;SPECL ["q";"p"] ADD.SYM] in 

REPEAT STRIP_TAC THEN IMP_RES_TAC (snd (EQ_IMP_RULE thl)) THEN 
IMP_RES_TAC (SUBS sublist (snd (EQ_IMP_RULE th2))) THEN 
IMP_RES_TAC (SPECL ["m+n";"p+n";"p+q"] LESS_TRANS) 
THEN ASM_REWRITE_TAC [] 

Translation: 
(implies (and (lessp m p) (lessp n q)) (lessp (plus m n) (plus p q))) 

However, translating specifications appropriately for such systems can be difficult, often leading to an 
excess of axioms that can slow down the provers to the point where fully automatic proofs become 
impossible in practice. 

We feel that what is needed is some kind of compromise between the two types of tools. To 
achieve such a compromise, we are developing PM as not simply an improved HOL interface, but as a 
general proof management interface that allows the user a choice of provers, and even allows different 

474 



provers to be used during the course a single proof. We note that although the experience of some human 
verifiers (e.g., [Win89]) leads us to believe that a choice of theorem provers will be very useful, there is a 
potential alternative benefit to a unified tool such as PM: it could provide for a standard theorem prover 
interface language that could allow designers of development and verification systems that incorporate a 
theorem proving capability support to factor out the question of which actual theorem prover to incor- 
porate. 

PM is based on the tree editor Tree-mode [Kamin90] [HKC85], an extension to GNU emacs, and is 
designed to maintain proofs in a tree structure in such a manner that the assertions in the children of a 
validated node are always guaranteed to imply the assertion in the parent. Nodes in a tree maintained by 
PM are validated via calls to a theorem-prover. It is this device which makes it possible to use different 
provers at different stages of a large proof. Once sound translation schemes from a common assertion 
language to different provers are in place, the validity of proofs obtained using PM depends only on the 
soundness of the theorem provers used to validate nodes. 

Our initial PM prototype uses, as indicated above, the HOL assertion language as the common 
assertion language, and has first-order translation capabilities to provide interfaces to provers whose 
assertion languages arc first-order. These include the Greenbaum resolution prover [Green86] and, thanks 
to Kaufmann's Skolemizer [Kau89], the Boyer-Moore prover. In its current form, one can assure that 
proofs obtained using this prototype simply as a HOL interface are valid. We cannot yet provide this 
assurance for proofs using additional provers: in the interest of testing the feasibility and utility of a 
multiple-prover interface, we are concentrating initially on implementing plausible translation schemes. 
Ultimately, we will justify their soundness in detail. 

We do not underestimate the problems involved in the PM project. Most prominently, there are 
many questions to be answered about the translations to be provided between provers, and proofs (as 
opposed to plausible arguments) of translation soundness must be provided. In addition, we must deter- 
mine the best way to maintain parallel versions of theories, and how to handle type information, abstract 
type definitions, recursive function definitions, and so on. 

We do not have answers to all of these questions yet, but we have made a beginning. After discuss- 
ing related efforts in section 2, we describe some of the problems inherent in the development of PM in 
section 3, and in section 4 report on what we have so far accomplished and on where we are concentrating 
our current efforts. In section 5, we discuss our future plans for PM. An appendix includes an example 
of what PM looks like. 

2. Related work 
Tree-mode, the tree editor underlying PM, comes from a line of tree-oriented editors and tree-based 

theorem-proving interfaces [HKC85, Ham88, Kamin90, Swarup88] developed at the University of Illi- 
nois, including interfaces to Nuprl [Swarup88] and the Greenbaum prover [HKC85]. None of these pro- 
vided a true multiple-prover interface. 

The current command-line interface to HOL [Kal91] is is an improvement over previous 
command-line interfaces in that HOL keeps track of the tree structure of the proof, and a user can attack 
the proof at any point in the tree. This provides a lot of flexibility in proof management. However, PM 
provides a HOL user with the additional advantages of direct and visual control of the proof. The process 
of moving the cursor in the tree to prove or edit components of the proof in a random access manner gives 
PM a great deal of extra flexibility. The ability to display the proof tree in many different formats also 
gives the user quick access to information about the proof not available in any other way. 

Adding external theorem provers to a HOL environment is not the unique way to add heuristic proof 
to HOL. There are concurrent efforts to integrate such proof into HOL directly. There are attempts to 
implement features in HOL similar to the tactic AUTO-TAC in the Nuprl system which solves simple 
goals automatically. More sophisticated specification tools [Win90] can, by providing constructs such as 
abstract theories, create domain-specific auto-tactics. However, such auto-tactics are seldom as general or 

475 



efficient when applied to the same problems as automatic provers specialized to the same purpose. 
Simplifying the process of proving essentially-first-order assertions by supplementing HOL has 

been done by the indirect use of FAUST [SKK91], a prover that is implemented in ML, and thus easy to 
integrate into the HOL environment. FAUST is a full first-order automatic prover based on natural 
deduction using a sequent calculus whose inference rules can be tranlated into HOL inference rules; thus, 
a FAUST proof essentially can be translated into a HOL tactic. The problem of equivalence of formulae 
and inference rules in FAUST and HOL is currently avoided by using FAUST to find a HOL tactic, and 
then running that tactic in HOL. Thus, the proof security provided by HOL is retained, although full 
advantage of the speed-up in the proof process is not yet being taken. It should not be difficult to include 
an interface to FAUST in PM. 

3. The development of PM 
In this section, we discuss in more detail some of the problems that arise in connection with the 

development of a combined theorem prover interface, and how we are handling or planning to handle 
them. 

As will be elaborated in the next section, PM maintains proof trees containing the lemma structure 
that supports the proofs of the assertions at their roots. PM is currently primarily a HOL interface, and as 
such, maintains a theory node that contains the currently saved axioms, definitions and theorems available 
at each call to the HOL prover in the current proof trees. This information needs to be made available, so 
far as possible, to any other provers supported by PM that may be invoked in the course of a proof. In the 
cases we have examined so far, when this information is not higher-order, there exist translations suitable 
for the Boyer-Moore and Greenbaum provers which is of varying degree of directness. For example, 
recursive function definitions (e.g. [Ploegaarts91, Andersen91]) typically (modulo type information) 
translate easily into Boyer-Moore input, but require a (usually straightforward) formulation as a set of 
axioms for the Greenbaum resolution prover. First order formulae, on the other hand, can (again, modulo 
type information) be passed easily to the Greenbaum prover, but would need to use Kaufmann's Skolcm- 
izer or some similar device to be formulated for the Boyer-Moore prover. In at least some cases, second- 
order formulae can be expressed as first-order, this is discussed in more detail in the next section. The 
simple abstract and recursive type definitions we have examined so far also appear to have relatively 
easily obtained translations. Developing actual translation algorithms and discovering their limitations 
will be our next step. As discussed in the next section, we have a preliminary algorithm that handles a 
subset of HOL formulae. 

So far in this section, in discussing translation, we have ignored the problem of type information. In 
typeless logics such as that of the Boyer-Moore and Greenbaum provers, this can be handled by using 
appropriate predicates. By the use of predicates, one can even express information about function types 
and polymorphic types. It is known that, in resolution proving, a more efficient way to handle types is to 
tag expressions of a given type with the type name, to prevent terms of different type from unifying. This 
device becomes much more difficult to use in the presence of function types and polymorphic types; it 
remains to be settled which scheme to implement for resolution proving, or whether to provide the user 
with a choice. Preliminary experiments have shown that a type tag scheme could be useful even in the 
presence of polymorphism and quantification of functions. [Archer92] 

Other details to be worked out involve proof tree management simultaneously for provers that favor 
forward and backward proof, and how to handle sequents (the standard form for assertions in HOL) in 
provers that do not use them. However, there seem to be very natural solutions to these problems; for 
example, sequents could be handled by the creation of temporary children of a node, with a call to a non- 
sequent-style prover to show that the node assertion follows from the child assertions introduced as tem- 
porary axioms. 

476 



4. The current status of PM 
As an interface to HOL, PM is well-developed. Facilities exist for moving around in the tree, 

adding and removing nodes, copying subtrees to new locations, calling the HOL system with a given tac- 
tic to be applied to the goal stored at a node, and compacting contiguous sets of validated nodes and their 
tactics into a single node and tactic. The result of applying a tactic to a goal is a (possibly empty) set of 
subgoals which are guaranteed by the tactic to imply the original goal; for valid tactics, the corresponding 
subgoal nodes are automatically added to the goal node as its children; some of these operations cause the 
status of a node (which indicates whether or not it is valid and how it is known to be so) to be updated 
appropriately. There is also a capability of maintaining function and tactic definition and type informa- 
tion in conjunction with the whole tree. 

When a valid tactic is applied to a node, that tactic is saved as part of the information at that node 
(displayed only by request), so that the information maintained in a tree, all of whose nodes have been 
completely validated, will be sufficient to construct a proof of the root. Maintaining such information 
also allows one to use information stored at a node to re-prove the node from its children; this can, for 
instance, permit one user to confirm the validity of a proof constructed by another. Until the soundness of 
all tree-editing operations is formally proved, this ability to re-prove is the guarantee of soundness of 
HOL proofs as documented by PM (although a result proved using HOL from PM is guaranteed to be as 
valid as one proved using HOL directly). PM proofs using only HOL can also be checked by taking 
advantage of the compaction feature of PM; applied to a complete HOL-PM proof tree for an initial goal, 
compaction will produce a pure HOL proof which can be confirmed using HOL directly. Currently, this 
is the method provided for assuring HOL proofs in PM to be solid. When soundness proofs for PM arc 
completed, such extra assurance will not be necessary. 

In a proof tree maintained by PM as a multiple theorem prover interface, nodes are "validated" by 
calls to an external prover. The information at a validated node (in the case of HOL, a tactic and type 
information) includes a record of how to reproduce the proof that the goal at the node follows from the 
subgoals at the node's children. 

HOL proof construction in PM typically proceeds in a backwards fashion, by applying tactics and 
tacticals to the goal, attempting to reduce the goal to simple axioms and theorems already proved. 
Theorem provers such as the Boyer-Moore prover and the Greenbaum prover support a lemma-driven, 
forward proof style in which one first derives (or proposes) lemmas from which the theorem prover can 
derive the goal. Using forward proof in connection with the maintenance of a proof tree involves permit- 
ting the ad hoc—rather than automatic—addition of child nodes to a node. The details of how best to 
manage combined support for both styles remain to be settled. 

As we have indicated, a rudimentary capability for passing a subset of HOL formulae to the Green- 
baum prover is now in place. With simple adjustments for syntax, this will permit us to extend this capa- 
bility to the Boyer-Moore prover, thanks to Kaufmann's Skolemizer. 

The subset of HOL formulae that can be appropriately translated includes all that are manifestly 
first-order. However, additional formulae can sometimes be handled in a natural way by translating 
quantified variables of function type as undefined function symbols, or in some cases of boolean-valued 
functions, undefined predicate symbols. Other apparently higher-order assertions, for example, ones 
involving equality of quantified formulae, can be handled by translating equality as the logical operator 
iff. Currently, our algorithm works as a filter, first determining whether it is able to produce a translation. 

An interesting feature of our first-order extraction algorithm is its analysis technique for determin- 
ing when to translate potential logical operators as meta-level logical operators, and when to translate 
them as low-level operations in some theory of booleans. There is sometimes a choice, but for some 
provers, including resolution provers, it is usually more efficient to use meta-level operators when possi- 
ble (unless their use requires extra axioms to connect them semantically to the low-level operators). 

Here are some example translations that our algorithm provides. The first example illustrates the 
mixture of meta-level and low-level boolean operators.   "And", "Or", "D", and are four HOL 

477 



definitions used in the goal. These definitions are used as rewrites in HOL to produce the rewritten goal, 
which is then translated into input for the Greenbaum resolution prover. The translated assertion and 
definitions shown below have a lisp-like format, in which "A" and "E" stand for "for all" and "there 
exists" respectively. 

Original: 
And = | - V a b c. And abc = (c = aAb) 
Or = | - V a b c. Or a b c = (c = a v b) 
D= |-Vabcd out. D a b c d out = (out =aAbvcAd) 
D_imp = | - V a b c d out. D_imp a b c d out = (3 p q. And a b p A And c d q A Or p q out) 
goal = V a b c d out. D_imp abed out = D a b c d out 

Rewritten Original: 
V a b c d out. (3 p q. (p = a A b) A (q = c A d) A (out = p v q)) = (out = aAbvcAd) 

Translation: 
(A (a b c d out) 

(IFF (E (p q) (AND (= p (and a b)) 
(= q (and c d)) 
(= out (or p q)))) 

(= out (or (and a b) (and c d))))) 

The second illustrates the introduction of undefined predicate symbols for quantified booleans. Note that 
"a" and "b" below become undefined 0-ary predicates, and "f" a unary predicate. 

Original: 
V a f n. a A f(n) v f(n) A b = f(n) A (a v b) 

Translation: 
(A (n) (IFF (OR (AND (a) (f n)) (AND (f n) (b))) 

(AND(fn)(OR(a)(b))))) 

Both examples prove faster with the Greenbaum prover than with HOL, and do not require construction 
of a tactic. 

One can go even farther than this in translating for first-order provers. For example, one can handle 
additional higher-order formulae by introducing an APPLY operation that becomes a new undefined func- 
tion symbol, accompanied by appropriate axioms to translate the definition of function equality, function 
construction, and type information. The question here is how far it is worth going. As soon as one has to 
add axioms, one increases the size of the search space of an automatic prover. The translation can start to 
become cumbersome and unnatural. Nevertheless, our inclination is to provide, eventually, as extensive a 
translation capability as possible, and then leave it up to the user of the system whether it is worth 
employing it in a particular case. 

5. Ongoing and future work 
We see PM as not only a tool for creating proofs, but a tool for documenting proofs. For the latter 

purpose, the appropriate use of squashing contiguous subsets of nodes can produce a tree with the 
appropriate conceptual proof structure. While we provide for the simultaneous compaction of tactics, the 
soundness of this compaction in all cases remains to be formally proved. Currently, to be totally 
confident of the correctness of individual compacted HOL tactics, one can rerun them in HOL. However, 
since only groups of validated nodes can be squashed, it is never in question that a parent assertion fol- 
lows from its child assertions. 

In general, we expect to store proof trees in such a form that, assuming all their nodes have been 
validated, the entire proof (or specific complex sub-proofs) can be automatically rerun on request. That 

478 



is, a completely validated tree will effectively constitute a proof script. 
As we have indicated in the introduction, our initial aim is to investigate the feasibility of combin- 

ing existing provers in a multiple-prover tool and the application of several provers in the course of a sin- 
gle proof. In addition to work on translation schemes, this effort will include applying the prototype 
extensively to real verification examples. 

Detailed proofs of soundness will eventually be undertaken, both for translation schemes and for 
proof compaction schemes and other tree-editing operations. 

We arc beginning with just three provers: HOL, the Boyer-Moore prover, and the Greenbaum reso- 
lution prover. Each additional prover incorporated into PM will require some effort in developing a 
corresponding translation scheme and translation soundness proof, although the general first-order trans- 
lation algorithm will help to factor this effort. It should not be especially difficult to incorporate FAUST, 
for example. In addition, we plan to add an interface to a BDD tool that handles binary decision 
diagrams, and develop other translation schemes to interface with various useful decision procedures. 

Beyond creating fixed translation algorithms, other translation possibilities arise. We note that there 
can sometimes be a choice of how to translate a given formula; for example, in the decision of which 
boolean operators should be treated as low-level or mcta-level. There are other cases in which generaliza- 
tion, e.g., in the form of ignoring type information, may be useful. In such cases, we may provide the 
user multiple options besides the default. A further ambition for the future is to take advantage of the 
availability of alternate provers by developing techniques for recognizing when sequents and formulae or 
sub-formulae are most suitable for handling by a particular prover. 

References 

[A-FL91] James Alves-Foss and Karl Levitt, Verification of secure distributed systems in higher 
order logic: a modular approach using generic components, Proceedings of the 1991 
IEEE Symposium on Security and Privacy, May 1991. 

[Andersen91] F. Andersen and K.D. Peterscn, Recursive Boolean Functions in HOL, to appear in 
Proceedings of the 1991 International Tutorial and Workshop on the HOL Theorem Prov- 
ing System and its Applications, August, 1991. 

[Archer91] Myla Archer, George Fink, and Yang Lie, Linking theorem provers to HOL using PM: 
Proof Manager, submitted to the 1992 International Workshop on the HOL Theorem 
Proving System and its Applications. 

[BM88] Robert S. Boyer and J Strother Moore, A Computational Logic Handbook, Academic Press 
(1988). 

[Cohn88] A. Conn, Correctness properties of the Viper block model: the second level. Technical 
Report 134, Computation Laboratory, University of Cambrigde, 1988. 

[Gordon87] Mike Gordon, HOL: A proof generating system for higher-order logic, in: VLSI 
Specification, Verification and Synthesis (G. Birtwistle and P. A. Subrahmanyam, eds.), 
Kluwer(1987). 

[Green86] Steven Greenbaum, Input Transformations and Resolution Implementation Techniques for 
Theorem Proving in First Order Logic, Doctoral Dissertation, University of Illinois at 
Urbana-Champaign, 1986 (also TR UIUCDCS-R-86-1298, Department of Computer Sci- 
ence, University of Illinois at Urbana-Champaign). 

[HKC85] David Hammerslag, Samuel N. Kamin, and Roy H. Campbell, Tree-oriented interactive 
processing with an application to theorem-proving, Proc. of the ACM/IEEE Conf. on 
Software Development, Tools, Techniques, and Alternatives (SoftFair II) (December, 
1985). 4?9 



[Ham88] David Hammerslag, Treemacs Manual, TR UIUCDCS-R-88-1427, Department of Com- 
puter Science, University of Illinois at Urbana-Champaign, 1988. 

[Joyce88] J. Joyce, Formal verification and implementation of a microprocessor, in: G. Birtwistle 
and P. Subrahmanyam, eds., VLSI Specification, Verification and Synthesis, Kluwer 
Academic Publishers, 1988. 

[Kal91] Sara Kalvala, Building Interfaces to HOL, to appear in Proceedings of the 1991 Interna- 
tional Tutorial and Workshop on the HOL Theorem Proving System and its Applications, 
August, 1991. 

[Kamin90] S. Kamin, Differences between Treemacs and Tree-mode, University of Illinois at 
Urbana-Champaign, 1990. 

[Kau89] Matt Kaufmann, An Extension to the Boyer-Moore Theorem Prover to Support First- 
Order Quantification, to appear in Journal of Automated Reasoning, also, CLI Technical 
Report 43, May 1989, Computational Logic, Inc., Austin, Texas. 

[Ploegaarts91]W. Plocgaarts, L. Claesen, and H. De Man, Defining Recursive Functions in HOL, to 
appear in Proceedings of the 1991 International Tutorial and Workshop on the HOL 
Theorem Proving System and its Applications, August, 1991. 

[SKK91] Klaus Schneider, Ramayya Kumar, and Thomas Kropf, Integrating a First-Order 
Automatic Prover in the HOL Environment, to appear in Proceedings of the 1991 Interna- 
tional Tutorial and Workshop on the HOL Theorem Proving System and its Applications, 
August, 1991. 

[SL91] E. Thomas Schubert and Karl N. Levitt, Verification of Memory Management Units, 2nd 
IFIP Working Conference on Dependable Computing for Critical Applications, February 
1991. 

[Swarup88] Vipin Swarup, The UIPRL Proof Development System Master's Thesis, University of Illi- 
nois at Urbana (1988). 

[Win89] Philip J. Windlcy, Private communication, 1989. 

[Win90] Philip J. Windley, The Formal Verification of Generic Interpreters, Ph.D. thesis, Univer- 
sity of California, Davis, 1990. 

[Win91] Phillip Windley, Abstract Hardware, Proceedings of the 1991 International Workshop on 
Formal Methods in VLSI Design, January, 1991. 

Appendix - PM Example 

To give a flavor of the use of PM, a sample screen of PM is shown at the end of the paper. This 
displays a proof in progress; the root node of the tree contains the definitions of the theory, and the only 
child of the root (labeled 71*") is the node containing the assertion to be proved. As in the HOL nota- 
tion, "!" stands for V and "?" for 3. Two subgoals of the proof have been translated to the TED and 
Boyer-Moore provers. 

PM can be obtained by contacting the corresponding author or on anonymous ftp at 
ted.cs.uidaho.edu in the file /pub/hol/pm.tar.Z. 

480 



[X] eniacs @ ent a 
/* Theory trial 

De f init ions : inverter,even,ninv,invspec 
/l*  Proved Fri Apr  3 21:54:20 1992 

Method : INDUCTJTAC THEN REPEAT STRIP_TAC 
Assertion : ! n in out. ninv n in out = invspec n in out 
/1,1*  Proved Fri Apr  3 22:16:16 1992 

Me tho d : REWRITE_TAC[n inv;invspec;even;inve r te r] 
Assertion : ninv 0 in out = invspec 0 in out 
/1,1,1*  Proved Fri Apr  3 23:20:44 1992 

Prover : HOL 
Method : Translation to TED 
Assertion : (out = in) = ((?f 0 = 2 f) 

3 23:24:04 1992 

=> (out = in) | 
(out = -in)) 

/l, 1,1,1 Proved Fri Apr 
Prover : TED 
Method : TED prover: pvl 
Assertion : (IMP (E (f) (= 0 (times 2 f))) 

(IFF (= out in) 
(OR (AMD (E (f) (= 0 (times 2 f))) (= out in)) 

(AND (NOT (E (f) (= 0 (times 2 f)))) 
(= out (not in )))))) 

/l,1,1,2*  Proved Fri Apr  3 23:51:12 1992 
Prover : HOL 
Method : Translation to bin 
Assertion : (?f. 0=2* f):bool 
Ql, 1,1, 2,1  unproven 

Prover : hm 
Assertion :  (exists  f  (equal 0 (times 2 f))) 

/1,2  unproven 
Assertion : ninv(SUC n)in out = invspec(SUC n)in out 
Assumptions : "!in out. ninv n in out = invspec n in out" 

I- * * — tree -ino de: app.pn (child 1 of 1) (Tree Basic)  

481 



Potential Benefits 
Prom Implementing 

the Clark-Wilson Integrity Model 
Using 

an Object-Oriented Approach 

by 
Craig A. Schiller 

Science Applications International Corporation 
30 June 1992 

Prepared for the 1992 
National Computer Security Conference 

In 1987, Dr. David Clark and Dr. David Wilson introduced the 
Clark-Wilson Integrity model to the world. Their landmark paper 
[CLARK87] points out that commercial systems require integrity 
more than they need confidentiality. The paper goes on to 
describe a model for achieving and preserving integrity. 

For the past 20 years or so, a paradigm for creating systems 
based on objects instead of processes, has evolved. The 
"object-oriented" paradigm claims that systems created in this 
manner result in better models of the real world entities that they 
represent. 

This paper describes potential benefits from a system 
development approach that uses object-oriented concepts while 
implementing the Clark-Wilson Integrity model.   The paper 
documenting this approach, "An Object-Oriented Strategy for 
Implementing the Clark-Wilson Integrity Model", was presented 
at the 1992 Information Systems Security Association (ISSA) 
conference in Houston, Texas (Copies will be made available at 
the session). 

482 



POTENTIAL BENEFITS FROM IMPLEMENTING 
THE CLARK-WILSON INTEGRITY MODEL 

USING AN OBJECT-ORIENTED APPROACH 
by 

Craig A. Schiller 
Science Applications International Corporation 

600 Gemini MS# Rl 1A 
Houston, TX 77058 

1, Introduction 
This paper describes the potential benefits from a system development ap- 
proach that uses the Clark-Wilson Integrity model and Object-Oriented meth- 
ods and concepts. The benefits described are a result of the software engineer- 
ing practices, the use of Ada. the Object-Oriented methods and concepts, and 
the Clark-Wilson Integrity model presented in [12]. The intended audience in- 
cludes individuals interested in high integrity systems, concepts for addressing 
integrity issues, object oriented technology, or the Clark-Wilson Integrity model, 
and vendors of security products and services. Due to space limitations, the 
reader is assumed to have a basic understanding of both, the Clark-Wilson 
Integrity Model and the Object-Oriented Paradigm. 

The purpose of this paper is to: 

• Stimulate discussion 
• Explore cross-fertilization benefits resulting from the combination 

of software engineering and security engineering 
• Present findings from a proposed implementation of the Clark- 

Wilson Integrity model 
• Share insights gained as a result of researching the application of 

object-oriented concepts to the Clark-Wilson Integrity model. 

1.1    Observations 

By themselves, traditional security controls (e.g. access.controls) cannot en- 
sure integrity. As you would expect, many of the controls, to achieve and pre- 
serve integrity, operate at the application software level. Integrity is, primarily, 
an application developer and user responsibility. Traditional security controls 
can preserve integrity, once acheived. but to meet a desired integrity-state, or 
change integrity-values requires the user/developers data specific knowledge. 
To achieve and preserve integrity a developer will determine the integrity re- 
quirements, then design and develop a system to meet these requirements. 
Controls must exist throughout definition, design, development, testing, opera- 
tions, and maintenance of a system. The Clark-Wilson model assists develop- 
ers by identifying strategic and application essential functions, relations, and 
processes affecting integrity. The approach, described in the companion paper 
"An Object-Oriented Strategy for Implementing the Clark-Wilson Integrity 
Model" 112], discusses an implementation of the Clark-Wilson model using 
existing technology. 

Integrity is a complicated subject. Every new insight is accompanied by a myr- 

483 



iad of new questions. A single, simple answer for integrity issues does not exist. 
Instead, a process is needed that will assist the developer, maintainer, and user 
in adequately covering integrity concerns. There are indications that the object- 
oriented paradigm and the Clark-Wilson Integrity model may produce synergistic 
benefits from their combined use. 

1*2    Qrfnniyation of the Paper 

This paper will describe the potential benefits from a hypothetical set of integrated 
application and system controls intended to achieve and preserve high levels of in- 
tegrity. Note that not all objects in a system merit these levels of integrity controls. 

rnient process is to determine which objects 
measures. 

One of the early steps in the developmc 
require extended Integrity/Availability 

First the Clark-Wilson model will be described in terms of objects. A summary of 
the implementation steps of the object-oriented strategy will be provided. The 
benefits from an object-oriented implementation of the Clark-Wilson model will be 
followed by recommendations for vendor support of this approach. A few final com- 
ments will conclude the paper. 

2. Applying Objects to the Clark-Wilson Model 
Figure 1 illustrates the Clark-Wilson Integrity model from an object oriented per- 
spective. As stated earlier, the intent of this paper is to show how an object-ori- 
ented approach might be used in an implementation of the Clark-Wilson Integrity 
model. Clark-Wilson and object-oriented concepts mutually benefit from an im- 
plementation approach based on both perspectives. In other words, the result of 
the joining of these two concepts is greater than each would have achieved inde- 
pendently. 

USER 
E2: Users are authorized for object 
E3: Users are authenticated 
C3: System level suitable separation of duty 
E4: System Authorization Lists changed 

only by security officer 

C1:    Verify operations 
Validate CDI state 

C5:    Promote operations 
validate UOIs 

E1:    CDIs changed only by 
authorized Transform 
operations 

C2:    Transform operations 
preserve valid state 

£ 
APPLICATION 

I 

C4:   Operations write to  LOQs 

E4: Application Authorization 
Lists changed only by 
security officer 

E5: Users are authorized 
for Object Operations 

•^m  
E6:  Application level suitable 

separation of duty 

C4: Operations write 
to  LOQs 

From the Object perspective operations are 
given verb names so to translate from the 
process oriented Clark-Wilson terms: 
IVP - Verify 
TP m Transform 
LOG= Record 

=   Promote is new, logical extension of IVP 
to address corrective actions 

=   E5 is new, it extends El to cover User to 
Application specific Object Operations 
access. It provides operations level 
access control to augment system level 
access control. 

=   E6 Is new, it extends C3 to provide 
application level enforcement of 
separation jofdtity _^___^^____ 

LOG 
C4: Operations write 

to  LOQs 

Figure 1 

484 



When the Clark-Wilson model is described in Object-Oriented terms four major 
objects emerge. They are: 

A USER object 
An AUTHORIZATIONS object - to support the Access Control Triple and 

the Separation of Duty concept. Appli- 
cation objects request authorization to 
honor an operation request. The Au- 
thorizations object uses authorization 
data, state data, and knowledge of rela- 
tionships to grant authorization. 

A LOG object - To support the Well-Formed-Transac- 
tion 

Application objects - One or more 

Each object can contain both unconstrained and constrained forms of data. 
The unconstrained forms are used when data is input (e.g. translated from 
ASCII to a typed variable), received from a lower integrity system, or received 
from an external source. The constrained forms are used for modeling the real 
world or logical entity. These are the strongly typed variables that are used for 
calculations and object values. 

Each object will contain four types of operations: 

• Verify - The equivalent of the automated portion of the 
Clark-Wilson Integrity Verification Process (IVP), 
translated into a verb. In the object-oriented 
paradigm, operations are given verb names. 

• Promote - A special case of the Clark-Wilson Transforma- 
tion Process (TP). Used in transitioning data 
from external sources or from systems of lower 
integrity. 

• Transform - The equivalent of the Clark-Wilson TP. Only the 
allowed object operations are visible to other 
objects. 

• Record - The equivalent of the Clark-Wilson LOG. This 
includes the different types of logs as identified 
in the follow-on NIST workshops [4). [8], [9] 

In an actual implementation, the concepts presented are to be applied in vary- 
ing degrees depending on the integrity and availability requirements of each 
object. Ideally, the objects will be grouped into processing domains according to 
the nature of integrity controls required. More than likely, each object's integ- 
rity requirements will vary. The degree of this variation will probably dictate 
that objects of similar integrity controls and limits will be grouped into do- 
mains. In writing this paper an assumption is made that each domain will exist 
on different processing nodes in a distributed system, each node running oper- 
ating systems with only TCSEC (Trusted Computer System Evaluation Criteria 
or Orange book)[13] C2 level capabilities. However, as operating systems con- 
tinue to evolve, it may be possible to have the different domains coexist in a 
single, affordable platform. 

485 



ft   ^itntnmy nf Proposed Implementation Steps 

Due to space limitations. Tables 1 and 2 summarize the proposed implemen- 
tation strategy. The detailed implementation steps can be found in [12]. These 
steps identify tasks for developing a system incorporating the Clark-Wilson 
Integrity model and the Object-Oriented concepts. 

Requirements and Development Phase 

11.       During requirements definition, explicitly declare the integrity, availabil- 
ity, confidentiality, and measurability requirements for each object. 
Identify objects requireing extended integrity measures. 

12.      During development, include, in the object specification, only those op- 
erations that are intended for use by other objects and users, 

13.       During development, include at the beginning of each object operation 
procedure (in the object body), a request to the Authorizations object that 
it perform the following: 

1.        Verify that the object's state, system's state, user's state, and other 
related object's states permit a requested operation. 

2.        Verify that an individual (or an individual's position) is permitted 
to request a specified operation. 

14.      During the requirement and development phases, 

1.        Perform a deliverable-specific, life cycle phased risk assessment of 
the integrity, availability, confidentiality, and measurability re- 
quirements of the system and its objects. 

2.        Perform certification testing of these requirements as part of 
system testing. 

3.        Bond the final system product using a non-repudible authentica- 
tion technique. 

Tablet 

486 



4 Potential Benefits and Concerns From the Research 
The potential benefits listed below are benefits of the approach described 
in [12]. As such, some of the benefits described are a product of aspects 
of the approach other than object-oriented concepts and the Clark-Wilson 
model. These other aspects include the use of good software engineering 
practices; the use of digital signature for quality assurance, version con- 
trol, and authentication; etc. 

4*1   Potential Baafiflti 
a. Objects can provide a close correlation to their real-world 

counterparts 
The closer correlation makes it easier to communicate with users of 
the system. Developers can discuss issues or concerns in real- 
world terms vice programming terms, resulting in a better model. It 
should also be easier to confirm that the logical state (the state of 
the real-world entity reported by the object) reflects the real-world 
state (the actual state of the real-world entity). This is turn makes it 
easier to verify the integrity-state of the objects. This close correla- 
tion between the real-world and the object-world provides a smooth 
transition from real-world concerns to high level logical concerns. 
The smooth transition through each layer of abstraction, down to 
the lowest layer of detail, is a primary benefit of the object-oriented 
approach. This characteristic of the object-oriented paradigm en- 
hances the ability of the Clark-Wilson model to verify correspon- 
dence with the real-world. 

b. Strong typing, related error detection, and error handling con- 
tributes to better real-world modeling and support for the Well- 
Fonned-Transaction. 
The strong typing, error detection, and error handling features of 
some structured, object-based languages support better real-world 
models by providing the mechanism for describing the logical object 
in terms ofreal-world limits. In doing so, these languages relieve 
the programmer of having to explicitly code many limit checks and 
reduces the overall complexity of the programming task. 
The error detection and error handling features of some object- 
based languages trap errors when they occur but allow them to be 
handled at a developer specified level. The developer can develop a 
strategic error handling hierarchy that will be enforced by the ap- 
plication. 
For example, the system designer may categorize data into the fol- 
lowing groups: 

• Data whose errors are to be handled on a field by field 
basis as they occur 

• Data whose errors are to be collected and handled on 
an object basis 

• Data whose errors are to be collected and handled at 
the application level. 

In addition, non-data errors can also be grouped according to a hi- 

487 



Operations Phase 

15. During the operations phase, 

1. Authenticate that the system being executed is the bonded system; 

2. Authenticate mat all components are the correct version from the 
official source; 

3. Authenticate that the system has not been modified since bonding; 

4. Certify and accredit the system for operational use; 

5. Certify and accredit the system for use with its external inter- 
faces. 

16. During certification and accreditation (steps 15.4-15.5) certify that: 

1. The static data and code is unchanged from when the data was 
bonded; 

2. The states of the object, system, user, and related objects are valid 
(using IVPs); 

3. The object sate and data correspond to the real-world entity they 
represent (using IVPs). 

4. The system meets its inte3grity, availability, and confidentiality 
requirements (from the certifying agents' perspective). 

17. Enforce a strict integrity policy. Use isolation, IVPs and a promotion pro- 
cedure for promoting data from a low integrity domain to a higher integ- 
rity domain. 

18. Use discretionary access controls to deny access to data except through its 
object. If supported, deny execute privilege to all users except those that 
need to execute object operations. Use extended user-authentication to 
identify and verify users to the system. 

19. Maintain lists of relations (using the Authorizations object and system se- 
curity software) between users, operations, states, and objects. 

Table 2 

488 



erarchical error handling scheme. Errors might be handled at the 
module, object or application level. 
Managing the handling of errors also assists the developer in imple- 
menting Well-Formed-Transactions. When an error is handled the 
developer can: 

1 Flag the error 
2 Accept the error 
3 Accumulate error statistics 
4 Correct the error with an estimate (e.g. previous value 

or trend extrapolation) 
5 Correct the error with a reconstructed value 
6 Correct the error with a default value 
7 Correct the error with a request for replacement from 

the source 
8 Reject the data and restore the data (from the log) to 

the original value that existed before the transaction 
began). 

9.       Reject the data and continue processing. 
The developer makes a choice based on the nature of the system 
and data. The choice also depends on the robustness of the design 
of components that use this data. 
The encapsulation of data and processes Into objects enables 
the formation of the Clark-Wilson access control triple. 
Objects automatically encapsulate the data and related operations. 
By binding the user to an object (authorizing a user to use an ob- 
ject) and a set of it's operations, the access control triple is 
achieved. Concerns about the implementation of the access control 
triple are addressed in the following sections. 
Information hiding reduces the complexity of the system for 
developers 
The object developer reduces the complexity (for other developers) of 
the object by making visible only those operations which are in- 
tended for external use. Hiding those processes that are not in- 
tended for external use will reduce the chance that a developer will 
use an internal process by mistake. There is less chance that a 
developer will incorrectly sequence processes if the visible process 
controls the sequencing of internal steps. Information hiding re- 
duces the number of procedures to be learned to invoke a proc- 
esses. Information hiding also supports the concept of the access 
control triple by reducing the number of procedures that have to be 
controlled with an access control triple. 
The Authorizations Object is a key component of the implem- 
entation approach. 
The Authorizations Object provides enforcement of a strict integrity 
policy, even if the concept is not supported by the native operating 
system. The Authorizations Object is called each time an operation 
on an object is requested. The Authorizations Object verifies that 
the requesting object is of equal or lower integrity than the source 
object. When this is not true, either rejection or promotion must 
occur. 

489 



The Authorizations Object provides a mechanism for enforcing role 
and user based authorizations. This mechanism forms the basis for 
an automated enforcement of separation of duty restrictions. Sepa- 
ration of duty restrictions reduce the risk of fraud via privilege 
abuse and increase integrity via n-person control of critical opera- 
tions. This mechanism also forms the basis for the Access Control 
Triple enforcement mechanism. The Authorizations Object restricts 
access to and operations on constrained data items. Only developer 
supplied (or identified) operations are authorized for use on objects. 
These restrictions will reduce the risk of error by extending the 
concept of information hiding to a finer level of granularity. 
The Authorizations Object automatically enforces integrity, availa- 
bility, confidentiality and related state restrictions. It allows the de- 
veloper to specify object and operation specific responses to integ- 
rity/availability fault or failure. The Authorization Object can be 
used to automate the invocation of the Integrity Verification Proce- 
dure (IVP). 

f. Objects and object instantiation can provide support for the 
formation of integrity and isolation domains2. 
The Authorizations Object can be used to automate the promotion 
process required between domains of different integrity. This will 
reduce the possibility of corruption caused by the blind exchange of 
data with unknown integrity. In the approach, an object is instanti- 
ated in the isolation domain to allow the promotion to take place 
without endangering critical objects. 

g. Applying risk management techniques on objects to assure 
Clark-Wilson integrity/availability concerns contributes to the 
certification of transformation processes. 
The Clark-Wilson model states that the Transformation Process 
must be certified but does not describe the nature of the certifica- 
tion required. In the proposed approach, risk management is used 
at an object level to provide visibility into the integrity , availability, 
and confidentiality design decisions. This improves the chances 
that design errors will be detected and trade-off decisions will be re- 
viewed. The accepted residual risk is documented and is then re- 
viewable as a result of this approach. Certification testing is used to 
confirm the success of the above assurances. The system should be 
bonded with a non-repudible authentication technique to guaran- 
tee the certification survives the transition from development to op- 
erations. This form of bonding ensures that the use of certified and 
accredited processes can be confirmed. In addition, bonding can be 
extended to ensure that only the correct version of software or data 
modules may be executed. 

An integrity domain is a grouping of objects with similar integrity requirements that are protected 
from influence by objects outside of the domain. An isolation domain is a domain that may be 
isolated when performing operations on data of uncertain integrity. A domain (in this paper) is a 
protected or bounded processing environment. For this approach, it has been specified that each 
domain exists on a separate platform or processing node, recognizing that more capable operating 
systems are able to maintain multiple domains within one platform. 

490 



4.2   Concerns 
a. The Authorizations Object is central to the success of this ap- 

proach. The approach can only be successful if the privilege grants 
are designed and implemented well by both the developer/main- 
tainer and the administrator. 

The Developer/Maintainer is responsible for: 

Researching the affect of states on each operation 
Identifying the capabilities required to support desired roles 
Identifying those capabilities that are needed by all (unrestricted) 
Identifying non-role specific restricted capabilities 
Identifying separation of duty required restrictions 
Determining the desired level of granularity of operations control 
Determining which objects should be CDIs. 

The Administrator is responsible for: 

Honoring access requests form authorized owners, custodians, and 
stewards. 

Responding in a timely manner to requests 
Documenting and reporting needed modifications to authorizations 

object logic or data. 

b. The Clark-Wilson model can be subverted if DBMS or flat file edit- 
ing is able to modify data without using the certified object opera- 
tions. 

c. Finally, and most important. 

Management must be certain that 
enough is known about the application 
to provide for every need before apply- 
ing the Clark-Wilson Integrity model to 
an object. 

If the Clark-Wilson model is implemented on data that is not well 
understood, then the user may not be able to perform vital func- 
tions using the developer supplied operations. Unfortunately, the 
user will also not be able to get to the data using other, less restric- 
tive means. For this reason, even if the data is very well under- 
stood, a plan should be developed to accommodate emergency 
access to the data should it be required. Just as a facility prepares 
contingency plans in case of accident, so should the developer 
prepare contingencies for unanticipated emergencies. 

491 



5. Conclusions 
fit!    yffypmmendatlons for vendor Software support 

Five product enhancements by vendors supplying operating systems, se- 
curity software, and data base management systems will make this im- 
plementation easier. 

a. Provide an Authorizations Object service that applications 
may use to augment system discretionary access control with 
application specific access controls such as operations level 
access control and application level separation of duty en- 
forcement. 

b. Provide a Log Object service that applications may use to im- 
plement the Well-Formed-Transaction concept. 

c. Provide an easy mechanism for application developers to bind 
object operations to DBMS data and to preclude all other ac- 
cess to designated data. 

d. Provide a digital signature engine as a system service. 
e. Provide linkage that employs the digital signature technology 

as an executive management function. As part of the system 
build and executable load process this would be useful to 
configuration management and quality assurance. 

iL2    Summary 

In conclusion, some of the issues raised by this research are more compli- 
cated than the original query (Levels of integrity, promotion, etc.). Some of 
the side issues have far reaching impact (binary/analog nature of integ- 
rity, guarantees of valid certification, etc.). Clearly, there is no simple 
answer. A process is needed for providing integrity. I believe that the 
Clark-Wilson Integrity Model and the Object-Oriented paradigm are two 
components of that process. 

The Clark-Wilson Integrity model has provided focus and attention on the 
need for integrity. The Object-Oriented paradigm has much to offer to- 
ward that end. As in the companion paper, I hope that this paper encour- 
ages others to find ways to marry these two promising technologies with 
new and innovative ideas to improve the integrity and availability of our 
critical systems. There is much work to be done in the area of integrity 
engineering, and the future appears promising. 

<~~ Acknowledgements """^ 
The author would like to thank Donald L. Evans (Paramax) for his hours spent 
helping me refine this paper, J. David Thompson (SAIC) and Ed Kusik (RSOC) 
for their invigorating technical discussions of new ideas, Ron Harris (Rockwell 
Space Operations Company) for coinmg the terms integrity-state and integrity- 
value, the members of the Mission Operations Directorate (NASA/Johnson 
Space Center) and the MOD AJS Security Engineering Team (ASET) for provid- 
ing a fertile and productive environment for developing new ideas, and finally 
Susan Pernia (SAIC), Rich Owen (NASA), Steve Green (Paramax), Bob Smock 
(RSOC) and Jim Broadfoot(RSOC) for giving me the opportunity to work with 

VNASA and the MOD ASET. _, 

492 



BIBLIOGRAPHY 

1. Mission Operations Directorate AIS Security Engineering Team (MOD 
ASET) AIS Security Reference Structure JSC-25285 Projected publica- 
tion date September 1992 

2. Grady Booch. Software Components with Ada. The Benjamin/Cummings 
Publishing Company, Inc. 1987 

3. Grady Booch. Software Engineering with Ada. The Benjamin/Cummings 
Publishing Company, Inc. 1987 (Second edition) 

4. David D. Clark and David R. Wilson. "A Comparison of Commercial and 
Military Security Policies". In IEEE Symposium on Security and Privacy, 
pages 184-194, April 1987. 

5. David D. Clark and David R. Wilson. "Evolution of a Model for Computer 
Integrity". In Proceedings of the 11th National computer Security Confer- 
ence, October 1988 

6. Bryan Flamig. Turbo C++ — A Self Teaching Guide. John Wiley and Sons, 
1991 

7. Harmon and Sawyer. Object Craft. Addison-Wesley Publications. 1991. 

8. Stuart W. Katzke and Zella G. Ruthberg, Editors, Report of the Invita- 
tional Workshop on Integrity Policy in Computer Information Systems 
fWIPCIS). NIST Special Publication 500-168. January 1989. 

9. Zella G. Ruthberg and William T. Polk, Editors, Report of the Invitational 
Workshop on Data Integrity. NIST Special Publication 500-168, Septem- 
ber 1989 

10. Thomas R. Malarkey, Integrity in Automated Information Systems. NCSC 
C Technical Report 79-91, September 1991. 

11. D. T. Ross, J. B. Goodenough, C. A. Irvine. "Software Engineering Proc- 
ess, Principles, and Goals", Computer, May 1975. 

12. Craig A. Schiller, "An Object-Oriented Strategy for Implementing the 
Clark-Wilson Integrity model.", Proceedings of the 9th Annual Conference 
for Information Security Professionals, sponsored by ISSA, 22-27 March 
1992. 

13. DoD Computer Security Center, DoD Trusted Computer System Evalu- 
ation Criteria. CSC-STD-001-83, 15 August 1983. 

493 



Precise Identification of 
Computer Viruses 

Lawrence E. Bassham III 
W. Timothy Polk 

virus-lab@csmes.ncsl.nist.gov 
National Institute of Standards and Technology 

Computer Security Division 

Abstract 

The number of personal computer viruses continues to grow at an alarming 
rate. Many of these viruses are variants (i.e., close relatives) of "old" viruses. 
This often results in less than accurate identification of viruses. The conse- 
quences of this can be distressing: virus removal software fails, systems exhibit 
unexpected side effects, and researchers waste valuable time separating new 
copies of "old" viruses from new viruses. As a result, a public domain tech- 
nique for precise identification of viruses is needed. This paper explores various 
alternatives. 

Introduction 

Why Precise Identification is Needed 

The large number of variants of computer viruses complicate the processes of iden- 
tification and eradication of viruses. Traditional virus identification methods may 
result in an incorrect, or at least imprecise, identification. This is a problem for users 
and researchers alike. Precise identification of computer viruses is required to obtain 
accurate information about the side effects of a virus, since such side effects can vary 
widely between variants. Accurate removal of viruses from infected executables also 
requires precise identification of the computer virus. Finally, researchers need precise 
identification techniques to separate new variants from known viruses efficiently to 
assist in the reduction of workload. 

494 



What is Meant by "The Same" 

The first question to be addressed is the degree of precision required in this pro- 
cess. This may seem obvious but the relationship between samples is not always 
clear. Viruses which are self-encrypting or self-modifying may appear very different 
in different samples. Even simple viruses can include data areas that are variable. 

There are many virus samples which are functionally equivalent. They may differ 
in the textual messages found in unused portions of the virus (e.g., various Stoned 
variants). Others may differ by replacing assembly language statements by their 
functional equivalents. Such a replacement might be the substitution of "Store zero in 
AX (MOV AX,0)" with "Exclusive Or registers AX and AX, storing the result in AX 
(XOR AX,AX)." These virus samples may also be removed by identical procedures. 
It is fair to ask if these viruses are the same or not. 

Virus researchers do not agree whether these functionally equivalent viruses constitute 
"different" viruses. As a result, such basic questions as "How many viruses are there?" 
produce a bewildering range of answers. In late 1991, virus researchers and product 
developers were answering this question with estimates ranging from 350 to 1200. 

In a heuristic sense, virus samples represent the "same" virus if both are descended 
from the same "base" virus without human modification. A more precise definition 
is desirable. First, a suitable definition of "virus" is required, though. 

For the purposes of this document, the following definition of a computer virus will 
be used: 

A computer virus is executable code V which creates a functionally 
equivalent duplicate V and binds the new copy to existing code P, cre- 
ating P', in such a way that future execution of P' may cause execution 
of V. 

Note that V and V must be functionally equivalent, but may differ as a bit-stream. 
This difference may be due to modification of data or addressing information, variable 
encryption, or other self-modifying techniques. In this case, P and P' are clearly 
infected with the same virus. More generally: 

P' and P" are infected with the same virus V iff P' and P" could 
have both evolved from some P infected by V without occurrence of a 
hardware error. 

This definition has certain consequences. By this definition, the functionally equiv- 
alent virus samples described above are all different viruses. However, the self- 
modifying viruses may be very different samples, but are the same virus. 

495 



Theoretical Precise Identification 

Theoretically, precise identification is achieved by performing a byte-for-byte com- 
parison of the constant portions of a virus in an infected executable. In the case of 
self-garbling viruses, de-garbling must be accomplished before the comparison is per- 
formed. In practice, byte-for-byte comparison is impractical and undesirable. Byte- 
for-byte comparison would require the undesirable transmission of virus code in order 
to perform comparisons. 

What is Actually Needed 

An approximation of a byte-for-byte comparison process is required, allowing a user 
or researcher to determine the exact virus with an extremely high degree of accuracy 
without a library of virus samples. This can be accomplished with an accurate profile, 
or map representation of viruses. The profile should contain enough information to 
confirm the identity of the virus, but not enough information to reverse engineering 
the virus (i.e., obtain usable virus code from the profile representation). To be of the 
most use to users and researchers, the method used to represent viruses as well as a 
populated database of virus maps must be placed in the public domain. 

The Content of the Map/Profile 

In the simple case, the code profile representation describes constant sections of the 
virus. The section description includes the length, location, and a one-way crypto- 
graphic checksum. A description is provided for each contiguous, constant sections of 
code (i.e., code or constant data) in the virus. If all sections match, the executable 
is infected with the virus in question. 

Self-garbling viruses may impose additional requirements. Encrypted viruses will 
require decryption before the constant sections can be checksummed. The map must 
include a description of the decryption technique and specify the sections to which it 
must be applied. Self-modifying viruses may require additional work to restore the 
virus to the "base case." Again, this must be performed before checksum calculation. 
This information must also be provided in the profile. 

Precise Identification Tool Usage 

A precise identification tool would have two primary uses. The first usage would be in 
assisting virus researchers in determining if a sample is one of a known and analyzed 
virus. The second usage is for users, who have detected a virus infection, to perform 
an accurate cleanup procedure. In either case the infected file would be compared 
against one or more profiles to see if the sample can be identified precisely. To make 
the tool most useful, no prior manipulation of the infected file should be necessary. 

496 



This implies the profile should contain information for locating the virus code inside 
of an infected file and information necessary to degarble self-garbling viruses. 

Survey of Techniques 

While there is no standard technique for the precise identification of computer viruses 
as of yet, there are a variety of techniques which have been used to achieve this objec- 
tive. These techniques have been developed at University of Warsaw, the Bulgarian 
Academy of Sciences, University of Karlsruhe, and IBM's Virus Research Center. The 
trade-offs between these techniques are discussed, as well as an analysis of what is 
missing from the current techniques. 

University of Warsaw 

Members of the University of Warsaw, including Andrzej Kadlof, Editor-in-Chief 
of PCvirus Bulletin, developed the Virus Map Format. Maps of this format are 
distributed as part of the "Virus Identification Card" which is a regular feature of the 
PCvirus Bulletin. (The technique has been in use for over a year.) The virus map 
divides virus code into four types of fields. The four categories are: 

• V - virus code 
• W - working area 

• C - constants 

• G - garbage 

Block sizes are limited to 256 bytes. If a block is larger, it is subdivided into smaller 
blocks of the same kind. Checksums are computed for blocks of type V, C, and G. 
Decimal dumps of blocks of type C or G are sometimes included. 

offset block type length control sums 

0000 (  0) 
0008 (  8) 

0015 (  21) 
018A ( 394) 

virus code 
working area 

virus code 
constants 

8 

13 
373 
46 

AEOC 

907F 82ED 
E34B 

dump:     59 6F 75  72 20 50 43 20 69 73 20  6E 6F 77 20  53 Your PC is now S 
74 6F 6E 65 64 21 07 0D 0A 0A 00 4C 45 47 41 4C toned! LEGAL 
49 53 45 20 4D 41 52 49 4A 55 41 4E 41 21 ISE MARIJUANA! 
  0001C178:0002A4C3   

Checksums are computed with the algorithm used by the Polish Section of Virus 
Information Bank.  The map contains records for each block.  Each record contains 

497 



fields specifying offset from the beginning of the virus (in both hex and decimal), 
the block type, the length of the block, and a checksum value for the block when 
appropriate. 

This tool is the precursor to some of the other tools discussed in this paper. As such, 
this tool may appear to be the least ambitious. However, this technique is sufficient 
to precisely describe the vast majority of PC viruses. 

There are certain limitations, though. This tool, as it currently exists, cannot be used 
in an automated fashion. As an example of this, encrypted viruses must be decrypted 
before mapping can occur; decrypting information is not included in the Virus Map. 
The strength of the checksum technique is unclear. The 256-byte blocksize is an 
unnecessary constraint, but does not seem to pose any particular problem. 

Bulgarian Academy of Sciences 

Members of the Laboratory of Computer Virology in Sofia, Bulgaria developed the 
Virus Identification Program, or VIP. VIP was designed by Vesselin Bontchev, using 
the concepts in Kadlof's Virus Map. VIP was primarily intended for identifying and 
documenting simple viruses. 

VIP has several modes; the most important are the verification mode and the map 
building mode. In the verification mode, VIP will compare an executable to a par- 
ticular virus map to verify (or refute) that the executable is infected by that virus. 
In the mapping mode, VIP compares several executables which are infected by the 
same virus. The end result is a complete virus map. 

The automated mapping is not fool-proof. It must work on a set of assumptions, and 
when these assumptions are incorrect the mapping process will produce an incorrect 
map. The assumptions are: 

• that the executables are all infected by the same virus; and 

• that all variable portions of the virus will be different in the different samples. 

The first assumption is simply a matter of good laboratory procedures. The second 
assumption cannot be guaranteed, though. The assumption is probably correct if the 
executables supplied to VIP are different in nature (size, infection environment) and 
large in number. In any event, the map should be used to guide disassembly and 
verify the result of the automated mapping process. 

498 



The VIP map format includes some additional information in the header. This infor- 
mation includes the virus name, length, and a description of the relative position of 
the viral code in an infected executable. 

Name <any_text> 
Length <number> 
From <base> <number> 
<offset> <block_type> <length> [<chksum>] 
{<offset> <block_type> <length> [<chksum>]} 
[end] 

<number> is [$][+|-]<digits> 
<base> is Entry, Eof, Bof 
<blockjtype> isCode, Const, Text, Var, Junk 

VIP provides certain enhancements to the Kadlof Virus Map. Its greatest contribution 
is in the mapping process, though. As the number of new variants continues to 
explode, demands on the time of the research community will continue to grow. 
Realizing the full potential of precise identification will require maintenance of an 
up-to-date database of maps. 

VIP addresses a narrow class of viruses (non-encrypted, non-garbled), but this class 
includes the majority of known variants. This is basically the same segment of viruses 
that are addressed by the PC virus Virus Map (minus encrypted viruses). One en- 
hancement under discussion for VIP is the handling of encrypted viruses. A decryp- 
tion record would be added to the map. A meta-language describing decryption is 
envisioned; the record would include the decryption parameters and parameters. VIP 
may require separate maps for COM and EXE infections by the same virus. 

University of Karlsruhe 

Members of the Micro-BIT Virus Center are developing a very ambitious tool that 
has application in the precise identification field. This tool decomposes the virus 
code into a tree representation. At the leaves are assembly language instructions. As 
the decomposition progresses from the root, sections of code are determined, such 
as: replicator, payload, encryptor, etc. Replicator decomposes into trigger, target 
selector, etc. This tool requires extensive analysis to build the initial tree. This tool 
is also useful for determining genealogy of viruses. Heuristic analysis can be invoked 
to determine the similarity of sections of code. 

This tool can be used to pinpoint code shared between variants of a single virus 
family, as well as performing precise identification with high assurance. Currently, 
the time required to create the tree representation is prohibitively high. 

499 



This tool is not suitable for public domain release, do to the fact that it stores the 
actual virus code. It has many uses in a strictly research environment, including 
detailed code analysis and comparison. 

IBM 

Members of IBM's High Integrity Computing Laboratory have developed a tool called 
VERV. VERV contains a high level virus description language. The tool currently 
supports only virus verification. Additional features for virus removal are being de- 
signed. Records specifying decryptors are included for self-garbling viruses. VERV 
also provides hooks for when the virus requires actions that cannot be described in 
the high-level language. 

The file from which VERV reads virus descriptions consists of a number of virus- 
description blocks. Each block has the following structure: 

One or more VIRUS records 
A NAME record 
One or more LOAD records 
Zero or more DEGARBLE and related records 
Zero or more ZERO records 
One or more check records 
Zero or more REPAIR blocks 

For instance, the block for the Slow-1721 virus currently looks like this: 

VIRUS slow slow-1721 
NAME the Slow-1721 virus 
LOAD P-COM 0 6B4 
LOAD S-EXE 0 6B4 
DEXOR1 001E 06AD 0012 0000 Degarble the code 
DEXOR1 00EB 0159 0061 0001 and the data area 
ZERO 0012 1                           ; Zero the one-byte code-garble key 
ZERO 0061 1 and the data-garble key 
CODE 0000 00EA 38d5dc08 Code up to first data area 
CONST 0144 014E 0ff22ad9 COMMAND.COM 
CODE 015A 063C 74e00962 Code between data areas 
CODE 0657 06AD ad3b0b41 ; After the second data area 

500 



The VIRUS records simply give a list of one-word aliases for the virus that are used 
on the command line to tell VERV which virus to look for. These aliases are not the 
full primary name of the virus (that is given on the NAME record); they are just short 
abbreviations that the user can use on the command line. LOAD records tell what 
offset within the suspect file to load and how much of the file to load. DEGARBLE 
records tell how to decrypt or degarble when necessary. ZERO records tell where 
to blank out data in the virus before checksumming occurs. CODE, CONST, and 
TEXT records specify sections of constant code where checksumming is performed. 

VERV covers most, if not all, of the major aspects of what a precise identification 
tool should do. It operates on suspect files with no prior manipulation of the file. 
Additionally, VERV will process encrypted or garbled files. In a secure research 
environment, VERV can also be run in a byte-for-byte comparison mode, as opposed 
to a mode utilizing checksums. 

Such features as REPAIR blocks are not needed for the identification task, but show 
the sort of functionality a commercial product based on this technology might have. 
The major drawback to this technique appears to be the degarbling technique. The 
map itself does not specify how the degarbling should proceed, but refers to hard- 
coded routines in the VERV program. The remainder of the map is straightforward, 
providing a concise description of the virus. 

Future Work 

These projects provide a sound basis for the next step(s) in precise identification. 
Map-based identification is a better choice for virus identification. Tree-based so- 
lutions hold more promise for virus analysis. In the authors' opinion, an eventual 
solution will require items drawn from each of the Map-based projects. 

Kadlof's Map-based identification concept, as enhanced in VIP and VERV, can pro- 
vide the basis for precise identification of all viruses. The VIP concept of automated 
map building is essential if researchers are to keep up with the flood of new viruses. 
The ZERO command in VERV is not strictly necessary. The result is a more com- 
plicated map, with additional blocks and checksums. However, a MASK command, 
zeroing variable bits in a partially constant string may prove useful. 

Degarbling may be a remaining hurdle. The meta-language based degarbling tech- 
nique envisioned for VIP would be a more powerful solution than hard-coded routines; 
however, the hard-coded routines are clearly simpler in the short run. One interesting 
concept in the degarbling area is to use the virus's own degarbler for the task. This 
is an interesting concept, but poses a variety of implementation problems and risks 
due to the use of the virus's own code. 

501 



Work in precise identification field should result in the following items: 

• a standard, published, map format; 

• a public domain set of maps for all viruses found in the wild; 

• automated map building tools; and 

• map verification tools. 

If a hard-coded degarbling technique is used, a public domain set of degarblers may 
also be required. 

References 

Chess, David M., "Virus Verification and Removal", Virus Bulletin, November 1991. 

Triffonof, Ivan and Ivaylo Hadjiatanassov, "Welcome to VIP!", Virus Identification 
Program documentation. 

Fischer, Cristoph, "Research Activities of the Micro-BIT Virus Center: A Virus Pre- 
processor", Proceedings: Fifth International Computer Virus & Security Conference, 
1992. 

Kadlof, Andrzej, "Virus Verification and Removal", in Virus-1 Vol. 4, No. 226 

502 



PRIORITIES FOR LAN SECURITY - 
A CASE STUDY OF A FEDERAL AGENCY'S LAN SECURITY 

Shu-jcn II. Chang 
Room A216. Technology Building 

National Institute of Standards and Technology 
Gaithcrsburg, Maryland 20899 

1 INTRODUCTION 

This paper takes the reader inside a federal agency Local Area Network (the agency LAN) for a risk assessment. Based on the 
methodology outlined in "A Local Area Network Security Architecture" [1], the agency LAN is assessed for potential security 
threats and vulnerabilities. Security services and mechanisms are recommended for countering the vulnerabilities and threats that 
are found. A preliminary cost estimate for implementing these services and mechanisms is made, and a prioritized list of security 
mechanisms referred to as "Priorities for LAN Security" is proposed for the agency LAN. It is believed that the risk based 
approach described in this paper can be applied to other LANs to derive other LAN specific priorities for security. 

1.1 Research Approach 

A number of federal agencies and contractors have developed risk assessment methodologies [2] and guidelines [3], some of these 
have been automated [4]. However, publication of actual assessment is few, especially for assessment carried out for a specific 
LAN. To develop the agency specific Priorities for IAN Security, the following steps are taken: 

Step 1 - Define the Agency LAN Configuration 

In this step, the agency LAN configuration including the LAN devices, services, and other LAN resources is presented. 
The objectives for this step are to classify LAN resources, determine assets, and decide what the LAN will be used for 
and what needs protection. 

Step 2 - Assess Risks for the agency LAN 

This step assesses the agency LAN for potential threats and vulnerabilities found in most computer networks. A risk 
factor is computed for each threat and vulnerability found based on the probability of the threat occurring and the cost 
or loss due to this threat. 

Step 3 - Select Security Services and Mechanisms for the Agency LAN 

This step recommends appropriate security services and mechanisms for the specific threats found in the agency LAN. 
The implementation cost of each suggested mechanism is also estimated. 

Step 4 - Develop Agency Specific Priorities for IAN Security 

This step takes the threats found in step 2. the security mechanisms recommended in step 3. along with the cost 
estimates, and determines a cost-effective way of enhancing security in the agency LAN. The final product of this step 
is a prioritized list of proposed security mechanisms for the agency LAN. 

These steps are described in the following sections. 

2 THE AGENCY LAN CONFIGURATION & CAPABILITIES 

2.1 The Agency LAN Configuration and Management 

The agency LAN is a multi-server Banyan* network consisting of 17 servers and roughly 450 PCs. Each server runs a Virtual 

'Mention of specific products names is for description purposes only and does not constitute a NIST endorsement. 

503 



Networking System (VINES), has one or more hard disk(s), a tape backup unit, an internal uninterruptable power supply (UPS) 
unit, LAN card(s), serial communication card(s), and network printcr(s). The servers are spread over five agency centers, and 
connected via 9.6 or 19.2 kb leased lines between the centers. One of the centers hosts an 1IP3000 minicomputer, while another 
center hosts an IBM 3084/4381 mainframe for daily operations. The agency LAN operates over twisted pairs and fiber optic 
cables. 

A division in the agency manages the LAN. The division is responsible for the physical LAN. its configuration, and providing 
LAN-wide services such as electronic mail, mainframe access, and modem pool services. Local system administrators take care 
of administrative functions such as user administration, local file services, and backup of the group's file services. The information 
on the layout, configuration, and network services of the agency LAN is provided by the LAN managers, much of the information 
is also supplemented by documents. 

2.2 The Agency LAN Capabilities 

In the discussion that follows the LAN services provided for agency users are described along with the aspects of each service 
that need protection. Though not explicitly stated, it should be noted that the identification and authentication (I&A) of a user 
is a prerequisite before any of the services can be rendered to the user. 

LAN File Services 

This service provides LAN users the capability to store their own DOS files on the LAN server disk. The files can be stored in 
the users' private file area or a shared LAN file area. Since the server disk is shared by many users, access control is needed to 
protect the privacy and integrity of the information stored on the server disk. 

LAN Print Services 

This service allows LAN users to print documents on a network printer physically connected to a LAN server or a dedicated 
network printer connected to a user's PC. Output that contains sensitive information should be directed to printers that are 
physically protected from unauthorized users. 

LAN Application Software 

This service provides LAN users the capability to access applications software stored on a LAN server. Storing frequently used 
software on a LAN server frees up disk spaces on users' PCs. however, these shared programs should be protected against 
unauthorized modification. In other words, the integrity of the software must be protected. 

LAN Connections to Other Hosts 

This service permits LAN users to connect to other hosts for which they are authorized users. As computers are linked together 
to form LANs and WANs (Wide Area Networks), it has become more and more difficult to control and monitor what system 
one is connected to. This can pose a threat to LAN security. 

Electronic Mail 

One of the most frequency used network services is the capability of exchanging electronic mail; however, electronic mail is not 
necessarily secure. Unless protected by encryption, electronic mail is transmitted in the clear from network node to node. In 
addition, while the message is routed through the network, it is quite possible for someone with system privileges to access the 
message and modify its contents. The privacy and/or the integrity of the messages containing sensitive information must be 
provided. 

LAN Access Through PC Dial-in 

This service allows users to access the LAN from a standalone PC that is equipped with a modem and the necessary VINES 
software. The service is convenient for users who may be away from their offices but need to access the LAN from a PC not 
physically linked to the LAN. This service can raise a security issue, since an unauthorized user with the proper software may 
try to access the LAN by randomly guessing a legitimate user's login id and password. 

Electronic Calendaring 

504 



Electronic calendaring provides an integrated scheduling tool for a workgroup. Users can mark events on the calendar and 
coordinate meeting schedules with fellow workers. Proper access control is essential so that only legitimate users in the workgroup 
can modify the events and schedules, while others may look at the events and schedules but can not modify them. 

LAN FAX Capability 

This service allows LAN users to send a copy of a document stored either on the user's PC or on the server disk to any standard 
FAX machine. If the document contains sensitive information it should not he faxed without protection. 

3 RISK ASSESSMENT OF THE AGENCY LAN 

The security in a VINES network is provided by two VINES services: the StreelTalk naming service, and the V ANGuard security 
service [5], StreetTalk is a distributed directory service that maintains the names and attributes of all critical network resources. 
It enables other network services to enforce user access control and provides dynamic naming consistency over the network. 
VANGuard is a security service that enforces network security and authenticates all requests to access, add, or modify 
information. 

3.1 Vulnerability/Threat Assessment of the Agency LAN 

In this section, eight major threats to a computer network are reviewed for possible presence in the agency LAN. The primary 
vulnerabilities related to each threat, the likelihood of the threat occurring at the agency LAN, and the potential damage due to 
this threat are addressed. If VINES provides some protection for such a threat, the provided security features are presented. It 
should be noted that when a security feature is provided, the threat assessment should contain the assessment of the vendor's 
implementation, and the evaluation of the usage by the agency LAN users. A threat assessment is not complete without looking 
at both aspects; however, since the implementation contains much vendor proprietary information, this study will focus on the 
evaluation of the usage of the security features at the agency. The vulnerability/threat assessment is curried out mostly by the 
author by interviewing the agency system administrators and users and analyzing the information gathered, while the agency LAN 
managers are consulted from time to time. This is especially true in assessing the likelihood of threats occurring at the agency 
and the potential damage, which are each rated as: low (I). moderate(2), or high(3). The results of the assessment are summarized 
in Table 1. 

3.1.1 Threat of Unauthorized LAN Access 

This threat is usually caused by a weak or non-existent identification and authentication (I&A) process. The primary system 
vulnerabilities related to this threat are: 

A. Lack of or insufficient I&A scheme 

VINES implements its I&A scheme through the StreetTalk and VANGuard services When a user attempts to log in to the LAN, 
the user types in his/her StreetTalk name and password at the keyboard. The password is encrypted before it is transmitted over 
the LAN to the VANGuard service for authentication. The VINES password encryption algorithm is based on an one-way hash 
algorithm proposed by Purdy [6]. The rationale behind using this algorithm is that it is very difficult to determine the plaintext 
password even if the encrypted password is known. Therefore. I&A is not considered a system vulnerability. 

B. Poor password choices or management 

By default, VINES does not require the use of a password, however, system administrators have the option of requiring a 
minimum length password. At the agency, a six-character password is required. Users are allowed to change their own passwords, 
and when a password expires in 60 days, the user is forced to change that password. One deficiency, however, is that VINES 
does not check for easily guessed passwords. It is up to the users to choose adequately random passwords. The likelihood of 
unauthorized LAN access due to poor password choice is considered high, and the potential damage of this threat is also high. 

C. Known system holes 

This is not evaluated for the agency LAN since no proprietary implementation information is available. 

D. Misplaced trust in other hosts 

505 



In some operating systems, certain networking software require a trusted remote host. To simplify operations for users, some 
system administrators may configure the server to trust all the PCs on the LAN. thus allow network access without user 
authentication. This is not a vulnerability in the VINES network, since all network access and service requests must be 
authenticated in real-time. 

E. Poor physical control of LAN devices 

Although the agency is in guarded buildings this docs not imply that security is always tight. The servers are placed in rooms 
that are locked at night, but not locked at all times because users desire easy accessibility to the network printers connected to 
the server. Unauthorized server access can cause potentially high damage; however, all server consoles at the agency are password 
protected. The LAN activity is also monitored during working hours; hence the likelihood of unauthorized server access is 
considered "moderate". 

Many user PCs at the agency are not password protected at boot time. When users are away from their PCs, they tend to leave 
them unlocked, even though they may still be logged in to the LAN. Therefore, the likelihood of unauthorized LAN access due 
to this vulnerability is high, as is the potential damage. 

In order for a user to dial in to the agency LAN, the user must have access to a PC, a modem, the VINES software, and a 
legitimate user account and a password. For a hacker, a PC with a modem, and the VINES software are easy to obtain. The 
difficult part is guessing a legitimate user's id and password, provided that no default identifications such as "system", "sysadmin", 
"maint"...etc. are used in the LAN. The system administrators can make this guessing more difficult by setting up a user dial-in 
access list and restricting dial-in access to only the users who have the need. Such a list is not presently set up at the agency. 

F. LAN access passwords stored in batch tiles on PCs 

To log in to VINES, a user has to type in his/her SueetTalk name and password interactively. However, a batch file can be set 
up to contain the user's identification and password. When the user tries to login to the LAN. the batch file is supplied to the 
"login" command using the DOS standard input redirection feature. The "login" program will then receive its input from the batch 
file instead of the standard input device. This practice should be prohibited since it bypasses the system's only security check. 
The redirection of standard input and output is a DOS feature, not a VINES feature. Few users at the agency store their passwords 
in batch files, however, it is a vulnerability that can easily be exploited and result in unauthorized LAN access. The likelihood 
of this threat is rated "moderate". 

G. Login attempts not recorded 

Login attempts to VINES are recorded, and the system logs are examined periodically by the agency LAN managers. However, 
with 17 servers currently in operation, it is difficult to examine all the logs closely without the help of some automated tools. 
Thus the threat of unauthorized LAN access due to infrequent log scanning is rated "moderate". 

3.1.2 Threat of Unauthorized Access to LAN Resources 

Although one of the advantages of using a LAN is that many LAN resources can be shared among users, not all resources need 
to be made available to every user. Unauthorized access to LAN resources usually results from the fact that the access rights are 
not properly assigned, or the access control mechanism lacks granularity. 

VINES controls access to network resources through two mechanisms: adiiiinlisl. and access rights list (ARL). An adminlist is 
set up for each group to identify the users who have administrative privileges in that group. Each server on the network also has 
a corresponding adminlist. With VINES, there is no "super user" who can override security throughout the entire network. 

VINES uses ARLs to protect directories on the server disk, network printers, and other network resources from unauthorized 
access. Each ARL consists of StreetTalk names that describe who can use a resource, for printers and host connections, a user 
either has access to the resource or not. For directories on the server disk, the ARL not only specifies who can access information 
in the directory, but also the access level permitted. 

In general, the responsibility of guarding against unauthorized access to LAN resources falls heavily upon the system 
administrators who are responsible for setting proper ARLs for LAN resources in their jurisdictions. Currently there are no ARLs 
set up in the agency for connecting to the IBM/IIP hosts, however, users who wish to access the hosts still need to pass the 
security imposed by these hosts. The likelihood of unauthorized host access is considered moderate. For file service, most system 

506 



administrators have set up proper ARLs, thus the possibility of unauthorized access to other users' files is low. File sharing 
between groups is possible but rare at the agency, since it requires the system administrator's permission. File sharing between 
users in different agency centers is not practical due to (serial) line speed considerations. 

3.1.3 Threat of Compromise of LAN Data and Software 

This threat usually stems from the lack of encryption capability and placing sensitive information in high traffic areas. The agency 
LAN is vulnerable in this area, since no encryption capability is currently provided by VINES other than password encryption. 
Though the agency does not process any classified information, certain information is considered sensitive and should be 
protected. The threat of compromising LAN data and software is considered moderate. 

3.1.4 Threat of Unauthorized Modification to LAN Data and Software 

Since ARLs are normally set up for the agency file services, the likelihood of unauthorized modification is considered low. 
However, the threat can not be ruled out completely. If the threat does occur, early detection is crucial so that unauthorized 
modification can not travel throughout the LAN. A cryptographic checksum mechanism can be used for this purpose [7]. 
Currently no such a mechanism is used for protecting the integrity of LAN data and software. The likelihood of unauthorized 
modification without detection is considered "moderate". 

The agency has a policy regarding virus detection. All microcomputers are required to have commercial virus detection software 
installed and resident at all times. The threat of unauthorized modification due to virus infection on the LAN can be greatly 
reduced if the software that users upload to the servers is free of known viruses. The likelihood of this threat occurring at the 
agency LAN is considered moderate. 

3.1.5 Threat of Compromise of LAN Traffic 

Confidentiality of LAN Uaffic can be provided in two ways. One is physically securing the communications media and 
equipments; the other is encrypting sensitive LAN traffic. At the agency, the likelihood of compromising LAN traffic is 
considered moderate. Though communications hardware is generally secured, network Uaffic can still be intercepted with the right 
equipment. Furthermore, no encryption capability is currently provided for the network traffic. 

3.1.6 Threat of Unauthorized Modification to LAN Traffic 

Unauthorized modification to LAN Uaffic is less likely not only because network Uaffic is checksummed in compliance with the 
specifications of the IEEE-802.3 Standard, but also because it is difficult to modify LAN Uaffic in real lime without being 
detected. 

3.1.7 Threat of Spoofing of LAN Traffic 

Spoofing the LAN traffic involves (I) the ability to receive a message by masquerading as the legitimate receiving destination, 
or (2) masquerading as the sending machine and sending a message to a destination [ 1]. To masquerade as a receiving machine, 
the LAN must be made to believe that the address of the machine matches the destination address on the message being sent. 
However, LAN traffic can be intercepted by connecting a network monitoring device to a node on the LAN. 

Due to the real-lime authentication required by VANGuard for any service request, it is difficult to masquerade as a message 
sender and attempt to retransmit a message, especially when each session is liinestamped. 

3.1.8 Threat of Disruption of LAN Services 

Network disruption can be physical or logical. Physical disruption is related to system shutdown or hardware problems; logical 
disruption is caused by heavy network load or contaminated service software. 

Many natural and environmental threats can disrupt a computer network, for example, fire, hurricane, tornado, flood, earthquake, 
and thunder storms. These threats are considered small for the agency LAN. Nevertheless, it is essential to keep the LAN cable 
map and other configuration information up to date, and have a comprehensive contingency plan in case an unexpected disaster 
does occur. At the agency, such information may not always be up to dale, possibly because the likelihood of this threat to the 
agency LAN is low. Hardware problems and unintentional human accidents arc more likely to bring down the agency LAN. 
Fortunately, the Ethernet hardware at the agency is monitored so that early detection of hardware problems is possible. To prevent 

507 



Table 1. Risks of the agency LAN 

Potential 
Threat 

Vulnerability Likelihood of 
Threat 

Potential 
Damage 

Risk 

Unauthorized LAN 
access 

Poor password choice High (3) High (3) High (9) 

Unauthorized LAN 
access, Disruption of 

LAN services 

Insufficient physical control on 

servers and easy accessibility of 

server key 

Moderate (2) High (3) High (6) 

Unauthorized LAN 
access 

Lack of physical control on PCs. 

or unattended PCs logged in to 

LAN 

High (3) High (3) High (9) 

Unauthorized LAN 
access 

User dial-in list not properly set up 

on servers 

Low (1) Moderate (2) Low (2) 

Unauthorized LAN 

access 

LAN access passwords stored in 

batch files on unprotected PCs 

Moderate (2) High (3) High (6) 

Unauthorized LAN 
access 

Login attempts not logged or log 

files not closely examined 

Moderate (2) High (3) High (6) 

Unauthorized host 
access 

ARL not properly set up for hosl 
connections 

Moderate (2) High (3) High (6) 

Unauthorized file 
access 

ARL not properly set up for file 
service 

Low (1) High (3) Moderate (3) 

Compromise of LAN 

data, software, & 
traffic 

Lack of encryption capability Moderate (2) High (3) High (6) 

Compromise of LAN 
data & software 

Easy accessibility lo information 
resources 

Moderate (2) High (3) High (6) 

Unauthorized 
modification to files 

Lack of control on uploading user 

software to shared area on server 
disks 

Low (1) High (3) Moderate (3) 

Unauthorized 
modification to LAN 
data & software 

Lack of modification detection 

mechanism 

Moderate (2) High (3) High (6) 

Virus attack in the 
LAN 

Virus detection software not 
diligently used 

Moderate (2) High (3) High (6) 

Disruption of LAN 
services 

LAN truffle not closely monitored Low (1) High (3) Moderate (3) 

Difficult/slow disaster 

recovery 
1  

LAN cable map and configuration 

information not kepi up to dale 

Low (1) High (3) Moderate (3) 

unintentional human errors or accidents, physical access to servers and crucial communications components should be controlled. 
At the agency, the wiring closets are key locked and only authorized personnel have access. However, some servers are easily 
accessible to general users. An obvious vulnerability is the easy accessibility of the server key. which contains the server's serial 
number and other crucial information for server authentication and operation. Any person who can access a server can pull its 
server key and bring down the server instantaneously. If the key is stolen, the server can not function until a new key is replaced 

508 



by Banyan. It is recommended that a sign be posted near the server's power cable warning users not to touch or move the power 
cable. 

Network services can be disrupted even if the LAN is physically connected. Such logical disruption can occur due to a virus on 
the LAN, software erasure, heavy network usage, or service being accidentally stopped. Because of the agency's policy on virus 
detection, hopefully a virus outbreak is less likely. Network service disruption due to the erasure of the service software is 
unlikely since this requires system administrator privilege. Heavy LAN usage is another factor that can degrade the LAN 
performance to an unacceptable level. The LAN traffic should be closely monitored so that an unusual traffic pattern can be 
detected early and proper action taken. Network management tools are installed in all agency servers and used for monitoring 
the LAN. The likelihood of disruption of LAN services is considered low due to network monitoring by LAN managers. 

3.2 Risk Analysis of the Agency LAN 

Table 1 summarizes the threat assessment of the agency LAN. In this section, a risk is calculated for each threat and vulnerability 
found in the agency LAN. The risk is determined by the likelihood of the threat occurring and the expected loss incurred given 
that the threat occurred as follows: 

risk = likelihood of threat occurring x loss Incurred 

The likelihood of the threat occurring and the loss incurred are both quantified and each assigned a rating of low, moderate, or 
high corresponding to the number 1, 2 and 3. For example, if the likelihood of users choosing easy passwords is high (assigned 
value 3), and the potential damage caused by unauthorized LAN access due to this vulnerability is high (again assigned value 
3), the risk is determined to be: 

risk = 3x3 = 9. 

With this assignment, a risk can have these values: 1, 2. 3. 4, 6, and 9. The risk is normalized as follows: a risk in the range of 
1 to 2 is considered a low risk, in the range of 3 to 5 a moderate risk, and in the range of 6 to 9 a high risk. The risks to the 
agency LAN are computed and included in Table 1. 

4. SECURITY SERVICES AND MECHANISMS FOR THE AGENCY LAN 

Based on the risk analysis performed in section 3, security services and mechanisms that are appropriate for reducing risks from 
the agency LAN are recommended, and implementation costs are estimated. Table 2 shows the services and mechanisms that are 
recommended for the agency LAN. It is quite possible that several mechanisms can be used to counter a single threat; in that 
case, multiple mechanisms are listed. It should be noted that a clearly staled security policy, a well defined set of security 
procedures, together with adequate user training are essential for achieving and maintaining a secure LAN environment. These 
mechanisms can be applied to practically every threat listed in Table 2. 

Also shown in the table is the cost estimate of implementing a particular mechanism in the agency LAN. Frequently, the decision 
on whether to use a certain mechanism is largely influenced by the cost of implementing such a mechanism. The cost is estimated 
based on the amount needed to purchase/develop and implement each mechanism in the agency LAN. Similar to the computation 
of risks, implementation cost is normalized; a 1 indicates a mechanism with a low cost, a 2 indicates a moderate cost, and a 3 
indicates a high cost. 

5. PRIORITIES FOR AGENCY SPECIFIC LAN SECURITY 

Given the cost estimates of the security services and mechanisms, this section determines the priorities of implementing these 
services and mechanisms that are most cost effective for the agency LAN. 

The priority of implementing a specific mechanism can be determined by examining the risks involved and the implementation 
cost as follows: 

priority = risk/cost 

The higher the ratio, the higher is the priority for implementing the particular mechanism. Deciding the implementation sequence 
of security mechanisms is a subjective process, especially when several mechanisms are prioritized roughly the same. 
Implementation cost may be a dominant consideration factor, however, there may be other concerns, requirements, or policies 

509 



that may mandate that a specific mechanism be implemented prior to others. For this reason, the implementation sequence may 
vary depending on the situations. 

Table 2 shows the prioritized list of recommended mechanisms in decreasing order. It can be seen from the table that the threat 
of unauthorized LAN access due to poor password choice registers the highest priority. This is because the risk of unauthorized 
LAN access is high and the cost to prevent it is low. The proposed Priorities fur LAN Security have been delivered to the agency 
for consideration for future implementation. 

Table 2. Priorities for LAN Security 

Threat Vulnerability Risk Service Mechanism Cost Priority 

Unauthorized 
LAN access 

Poor password choice High (9) I& A Use software to 
check for easily 
guessed passwords 

Low(l) 9 

Unauthorized 
LAN access 

Poor password choice High (9) I& A Use random 
password generator 

Low(l) 9 

Unauthorized 
LAN access 

Lack of physical control 
on PCs, or unattended 
PCs logged in to LAN 

High (9) I & A Use PC/keyboard 
locking mechanism 

Low(l) 9 

Unauthorized 
LAN access 

LAN access passwords 
stored in batch files on 
unprotected PCs 

High (6) I & A Set policy & 
prohibit such 
practice 

Low (1) 6 

Unauthorized 
LAN access 

Insufficient physical 
control on servers 

High (6) I & A Physical control 
and close server 
monitoring 

Low (1) 6 

Unauthorized 
LAN access 

Login attempts not 
logged or log files not 
closely examined 

High (6) Logging & 
Monitoring 

Use automated 
software tool to 
scan log files 

Low (1) 6 

Unauthorized 
host access 

ARL not properly set up 
for host connections 

High (f.) Access 
control 

Set up ARL* based 
on need 

Low (1) 6 

Compromise of 
LAN data & 
software 

Easy accessibility to 
information resources & 
lack of encryption 
capability 

High (6) Access 
control 

Physical control Low (1) 6 

Disruption of 
LAN services 

Insufficient physical 
control on servers and 
easy accessibility of 
server key 

High (6) Monitoring Physical conU'ol 
and close server 
monitoring 

Low (1) 6 

Unauthorized 
LAN access 

Poor password choice High (9) I & A Set policy & 
provide user 
training 

Moderate 
(2) 

4.5 

Unauthorized 
LAN access 

Lack of physical control 
on PCs, or unattended 
PCs logged in to LAN 

High (9) I & A Set policy & 
provide user 
training 

Moderate 
(2) 

4.5 

Unauthorized 
LAN access 

Poor password choice High (9) I & A Use token-based 
access control 
system 

High (3) 3 

510 



Threat Vulnerability Risk Service Mechanism Cost Priority 

Unauthorized 

LAN access 

Poor password choice High (9) I & A Use biomeb'ic 

system 

High (3) 3 

Unauthorized 
modification to 
data & 
software 

Virus detection software 
not diligently used 

High (6) Data 

Integrity 

Set policy & 
provide user 

training 

Moderate 

(2) 

3 

Compromise of 

LAN traffic 
LAN traffic transmitted 
in plaintext 

High (6) LAN 
message 
confidenti- 
ality 

Secure LAN 
medium & 
equipments 

Moderate 

(2) 

3 

Unauthorized 
file access 

ARL not properly set up 
for file service 

Moderate 

(3) 

Access 
control 

Set up ARLs based 
on need 

Low (1) 3 

Unauthorized 

modification to 
data & 

software 

Lack of control on 

uploading user software 
to shared area on server 
disks 

Moderate 

(3) 

Access 
control 

Sel up ARLs 

properly 

Low (1) 3 

Disruption of 
LAN services 

LAN traffic not closely 
monitored 

Moderate 

(3) 

Monitoring I'requenl 

monitoring 

Low (1) 3 

Difficult/slow 

disaster 
recovery 

LAN cable map and 
configuration information 
not kept up to date 

Moderate 

(3) 

Logging &. 

Monitoring 

Keep LAN 

configuration 
information up to 
date 

Low (1) 3 

Compromise of 
LAN data & 
software 

Lack of encryption 
capability 

High (6) Data 

confidenti- 
ality 

Provide encryption 
capability 

High (3) 2 

Compromise of 
LAN traffic 

LAN U'affic not 
encrypted 

High (6) LAN 
message 

confidenti- 

ality 

Encrypt sensitive 
LAN traffic 

High (3) 2 

Unauthorized 
LAN access 

User dial-in list not 
properly set up on 
servers 

Low (2) Access 
control 

Set up ARLs based 
on need 

Low (1) 2 

Unauthorized 

modification to 
data & 
software 

Lack of control on 

uploading user software 
to shared area on server 
disks 

Moderate 

(3) 

Data 

Integrity 

Use Message 

Authentication 
Code on sensitive 
data/files 

High (3) 1 

511 



REFERENCES 

[1] Camahan, Lisa, A Local Area Network Security Architecture. Jan. 1992. 

[2] U.S. Department of Energy Risk Assessment Methodology, reprinted as NISTIR 4325. May 1990. Available from: NTIS, 
Springfield, VA, 22161, telephone: (703) 487-4650. 

[3] U.S. Department of Justice Simplified Risk Analysis Guidelines, reprinted as NISTIR 4387, Aug. 1990. Available from: 
NTIS, Springfield, VA, 22161, telephone: (703) 487-4650. 

[4] Proceedings of the 4th International Computer Security Risk Management. Model Builders Workshop, Aug. 1991. 

[5] Banyan Systems Incorporated, VINES Architecture Definition, pp. 4-3 to 4-8, Aug. 1988. 

[6] Purdy, George B., A High Security Log-in Procedure, Communications of the ACM, Volume 17, No. 8, pp. 442-445, 
Aug. 1974. 

[7] Computer Data Authentication, National Bureau of Standards. Federal Information Processing Standards Publication 
(FIPS 113), National Technical Information Service, Springfield, VA. 1985. 

512 



PROTECTED GROUPS: AN APPROACH TO INTEGRITY 
AND SECRECY IN AN OBJECT-ORIENTED DATABASE 

James M. Slack 
Computer and Information Sciences Department 

Mankato State University 
Mankato, Minnesota 56002 

Elizabeth A. Unger 
Department of Computing and Information Sciences 

Kansas State University 
Manhattan, Kansas 66506 

Abstract 

In this paper, we propose an approach to integrity and secrecy in object-oriented database systems 
based on protected groups.    A protected group is a set of objects which will only accept messages 
from one or more interface objects. We show how discretionary access control, data integrity, access 
integrity, and the Clark-Wilson integrity model can be implemented with this approach. 
Keywords: Object-oriented database, security, integrity, access control, inference control. 

1    Introduction 

Object-oriented databases are becoming increasingly important for many applications. Recently, there has 
been interest in security for these applications as well. The subject of security consists of the areas of secrecy 
(or confidentiality), integrity, and availability. Much of the research in object-oriented security follows the 
familiar lines of discretionary access control, mandatory access control, and multilevel secure database 
systems. Researchers are still exploring various access control mechanisms. Some possible approaches 
include restricting access to classes, instances, attributes, or methods. This can be done within the object- 
oriented database itself or with a separate authorization structure. 

In this paper, we propose an approach to integrity and security in object-oriented database systems 
based on protected groups. A one-way protected group is a set of objects which will only accept messages 
from one or more interface objects. A two-way protected group is a refinement of a one-way protected 
group. We deal with one-way protected groups in this paper; see [24] for treatment of two-way protected 
groups. 

Military security is typically concerned with control of disclosure, while commercial security is con- 
cerned with control of modification.[12, 21, 14, 15] We are interested in both kinds of security here. 

The National Computer Security Center has recently defined two types of integrity in [23]: 

1. Data integrity: concerned with preserving the meaning of information, preserving the 
completeness and consistency of its representations within the system, and with its cor- 
respondence to its representations external to the system. It involves successful and 
correct operation of both computer hardware and software with respect to d?.ta and, 
where applicable, the correct operations of the users in the computing system. 

2. Systems integrity: concerned with successful and correct operation of computing re- 
sources. 

Smith has identified three types of integrity:[28] 

1. Access integrity: concerned with making sure only authorized users modify objects. 

2. Object integrity: concerned with making sure that the value of objects are not corrupted, e.g., that 
an electronic funds transfer is correct. 

513 



teaching Assist ant 

[student, employee. Percent: rea/] 

{GetPercent, SetPercent} 

joe 

teaching Assistant 

0 

Figure 1: The object class teachingAssistant and the object instance joe. 

3.   Data integrity: concerned with making sure that the value of each object satisfies a set of validity 
assertions. 

Each of Smith's integrity types is part of data integrity in the NCSC's definition. We are concerned 
with the Smith's definition of access integrity and data integrity; therefore we will use his definitions of 
integrity in this paper. 

Several authors have suggested that the object-oriented approach may yield simpler solutions to ex- 
isting security problems than the relational approach because security constraints can be incorporated 
within methods (e.g., [4, 21]). On the other hand, the object-oriented approach may complicate rather 
than simplify matters because of the increase in the number of operations and higher complexity of the 
structures.[19, 20, 29] In either case, it appears that the object-oriented data model will become the 
dominant data model in the future.[30, 17] 

2    Formal Model of an Object-Oriented Database 

The object-oriented data model in [25] incorporates objects, classes, methods, multiple inheritance, and 
encapsulation. Each class and attribute is an object in its own right, but methods are not objects. Classes 
are defined at the same "level" as other objects and use a simple multiple inheritance scheme. In this 
model, objects cannot change their structure (e.g., object instances cannot change classes). Also, the only 
way to access an attribute in an object is through a method of that object. Since attributes are themselves 
objects, they must be accessed using their own methods. The model assumes that if two methods inherited 
from an object's parent(s) have the same name, then they represent the same method (i.e., they are derived 
from the same object). 

The primitive set V consists of the union of Z, the set of integer numerals; R, the set of real numerals 
(computer reals); S, the set of strings; B, the set {true, false}; the set of domain names: {nil, integer, 
real, string, boolean}; and the empty domain name base. We also assume the existence of A, the 
countably infinite set of symbols for attributes and I, the countably infinite set of identifiers. 

An object s, is a triple (i, r,m), where i is an identifier, t is the type of the object, and m is a set 
of methods. We illustrate an object as a rectangular box with three compartments (see Figure 1). The 
topmost compartment contains the object identifier; the middle compartment contains the type; the bottom 
box contains the set of methods for the object. 

A class is an object a, = (i, t, m) where t is a set-structure, a tuple-structure, or the empty domain name 
base. Attributes of a set-structured type are unnamed. Att ributes of a tuple-structured type may be named 
or unnamed. Unnamed attributes are parent class identifiers. Named attributes are instance identifiers; 
they are used to store values. An instance of a class is an object (i, i, m) where t is an object class identifier 
and m is the empty set. A cycle cannot exist in the identifiers in object instances or in unnamed attributes 
in tuple-structured and set-structured o-terms. In Figure 1, the object teachingAssistant is a class because 
[student, employee, Percent:real] is an o-term. The object joe is an instance because teachingAssistant is 
an identifier. 

Methods are the operations that access and manipulate attributes within objects. The set of methods 
encapsulated in an object defines the behavior of that object. A method is a function which takes the 
state of the database, an object identifier, and a list of parameters as input, and returns a new state for 
the database along with a return message. A different kind of return message results when a method is 
invoked on a class object. A method invoked on a class object s, results in a "set" of return messages: the 
return message of each instance of s, is in this set. 

The state of the database consists of the set of states of all instances in the database. The state of an 
tuple-structured instance consists of a sequence of object identifiers for the attributes of the tuple.  The 

514 



state of a set-structured instance consists of a set of object identifiers. For illustrative purposes, we will 
sometimes include the state of an instance in the bottom box of an instance instead of the empty set 
of methods. We will also include the value of the object identifier rather than the identifier itself. For 
example, an instance of a class employee with a string and a real attribute would look like this: 

emp! 

employee 

'John Smith',30000.0] 

A subject in our model is an object instance which has the ability to start a message spontaneously. A 
message is an instance of the class menage where the type of the message is: 

[FromObj : object, ToObj : object, ACI : A Clinfo, MessageName : string, Parameters : parameterhst, ...] 

and the messages include SendMessage, ReceiveMessage, SetACI, and GetACI. The attribute ACI con- 
tains access control information for the originating subject. The particular access control information 
used depends on the security and integrity model, e.g., the user identifier for discretionary access control 
or Clark-Wilson integrity, security level for mandatory access control. Methods SetACI and GetACI are 
privileged operations; only certain objects that are registered with the system may invoke them. A spon- 
taneous message (i.e., sent by a subject) will not contain access control information. Any other message 
will contain the access control information of the incoming message which started the associated method. 

The class parameterhst defines a sequence1 of parameters, where each parameter is an object identifier. 
Any object may invoke the SendMessage and ReceiveMessage methods directly, i.e., without sending a 
message to the message class. (This is necessary because otherwise, an object would need to send a 
message to SendMessage, but this requires sending a message to SendMessage, etc.) SendMessage and 
ReceiveMessage are the only methods which can access the attributes in a message. 

For example, suppose subject sSUe wishes to find out the percentage time Joe works as a teaching 
assistant. Subject «Sue invokes SendMessage to send the message («Sue, s\oe< null, GetPercent, ()). In this 
example, the message is from subject «Sue to object »joe, requesting s;oe to invoke method GetPercent 
with no parameters. The value null represents the default access control. 

A return message is a message which contains a return value (i.e., an object identifier) as a parameter. 
The parameter list may also contain other values which identify the message as a return message. It is up 
to the method language to distinguish return messages from other messages, based on the parameter list. 

3    One-way Protected Groups 

Our secrecy/integrity mechanism is based on the idea that objects are partitioned into protected groups. 
(For the remainder of this paper, we will use the term protected group to mean one-way protected group.) 
A protected group can support need-to-know and any hierarchically structured set of access rights. Each 
protected group has one or more interface objects which accept messages from any source. All other objects 
in a protected group are implementation objects. An implementation object is hidden from external view 
and only accepts messages from an interface object of the same group. 

There are several possible implementations of protected groups; we will outline one approach which 
requires some enhancements to the data model. This approach assumes that the system guarantees the 
integrity and secrecy of messages. 

Each object is augmented with the identifier of the interface object from which the object will accept 
messages. This information is inherited by subclasses and instances. Therefore, the inheritance mechanism 
is protected: an object may not have parents in another protected group. 

Definition 1 A protected object s, is a 4-tuple (i,t,m,g), where i is an identifier, t is an o-term or an 
object class identifier (defined shortly) which defines the type of the object, i.e., it restricts the object's 
domain, m is a set of methods, and g is either an object identifier from which s, will accept messages or 
the reserved identifier null, which means s, will accept messages from any source. 

A sequence is an ordered, heterogeneous multiset. We can define a sequence in the model as a set of tuples in which 
each tuple contains a value (i.e., and object identifier) and a unique integer. The integers define the order of the elements. 
For clarity, we will write a sequence as a list of values between parentheses, e.g., ('Smith', 12.34, 'Smith'). 

515 



An implementation object 5, = (i,t,m,g) is an object which only accepts messages from some other 
object sg. An interface object is an object s9 from which some other object a, will accept messages. Note 
that an object s, may be both an implementation and an interface object. This feature would be useful in 
a "layered" protection scheme, in which one or more protected groups are enclosed in a larger protected 
group (e.g., see [24]). 

The protected object definition could be generalized to include a set of interface object identifiers, but 
we will keep the approach as simple as possible for now. This protected group implementation can handle 
more than one class object in the same group: the interface object can manage messages for each class 
in the group. Name conflicts among messages of the different classes can be resolved by extra parameters 
in the messages. Instances of primitive classes (e.g., integer, real) can be protected by making protected 
versions of these classes within the protected group. 

4    Secrecy/Integrity Mechanism 

In this section, we explain how a combined secrecy/integrity mechanism can be constructed, based on the 
notion of protected groups. We first define a chain of messages as a sequence of messages starting at a 
subject and ending at some object. 

We require the following additional operational characteristics: 

1. The system identifies and authenticates subjects. 

2. The system can hide the existence of any object (e.g., classes, instances, subjects, messages) from 
any other object. 

3. A method can return a value that is indistinguishable from the "object not found" return value from 
the system. 

The secrecy and integrity of a protected group of objects is based in the interface object for that group. 
The interface object is the only object in the group which is allowed to invoke the methods GetACI and 
SetACI in method message, i.e., it is registered with the system for this privilege. 

4.1     Secrecy 

Let us consider secrecy first. When the interface object receives a message from some other object, that 
message is of one of these forms: 

1. The message contains the access control information of the originating subject, or 

2. The message contains no access control information, but does contain the object identifier of the 
source of the message. 

In the first case, the access control information is known. In the second case, the interface object can obtain 
the access control information based on the object identifier of the source of the message. The interface 
object can then set all further messages in this message chain to contain the access control information of 
the originating subject. If the source of the message is not a valid subject, the interface object can reject 
the message. 

The interface object also has access to the access control information of the target object of the message. 
This access control information may be stored in the object as additional attributes or in a separate object 
within the protected group. Using the access control information of the subject and the target object, the 
interface object can use the following general outline for each of its methods: 

METHOD MethodName (TargetObject, OtherParameters) 
BEGIN 

IF GetACI .is null THEN 
SetACI (access control information of source object) 

ENDIF 
IF GetACI compares.favorably.with TargetObject.ACI THEN 

Invoke TargetObject.MethodName (OtherParameters) 

516 



ELSE 
RETURN ('Object not found') 

ENDIF 
END 

In this approach, secrecy is a precondition that must be satisfied before access is allowed. The implementa- 
tion of the comparison operator comparesJavorably.wilh depends on the secrecy mechanism and the type 
of access control information. 

4.1.1     Discretionary Access Control 

The implementation of traditional discretionary access control is straightforward in this setting. Let us 
consider an example based on access control lists where access is determined by the subject (user) identifier. 
The class interface is defined as follows: 

interface 

base 

{MakeClass} (J X 

null 

where X is the set of methods from all other classes in this protection group. Class interface works together 
with class auth to restrict access to other objects in the protection group. Class auth is responsible for 
checking whether a subject s, is authorized to invoke a method m. It is defined as follows: 

autk 

[Object:o4;/(i,Meth:jlrin 3, Users: userSet] 

{OkTolIse,Grant Revoke} 

interface 

Both auth and interface are permitted to access and change the access control information in messages. 
Method MakeClass in interface creates new classes in this protection group. For each new class, MakeClass 
includes an Init method which creates instances of that class. This approach ensures that each new object 
in the protection group is never in an unprotected state. 

Let us now add a class of subjects and a class of employees to the protection group. We use MakeClass 
to create the following two classes: 

subject 

[ID: in teg er,Password: siring] 

{Add.Delete} 

interface 

employee 

[ID integcr,S&\&ry:real\ 

{G etID,S< •tID,GetS»lary,SetS*lary} 

interface 

Some secure database systems have both grant and give-grant2 capability, e.g., SeaView [16]. In these 
systems, user A can grant access to a method to another user if A has grant authority for the method. If 
A has give-grant authority for a method, then A can authorize another user to grant access to the method. 

The grant/give-grant approach can be implemented by incorporating more information into auth in- 
stances: 

'Grant and give-grant are called control and control unth passing ability, respectively in [22] 

517 



a«<A 

[Object: obj /i,Meth:slrinj, Users: userSet, 
Grantors: u»er5f*,GiveG rant ors:uatr5ei] 

{OkToUse,Grant,GiveGrant,Revoke} 

interface 

This approach allows grant and give-grant privileges to apply to each method of a class. Finer grained 
control is also available by having grant and give-grant privileges associated with methods of instances. 
Other approaches are also possible, e.g., using rules in the Grant and GiveGrant methods of the tnterface 
class. 

There are two common types of authorization revocations: simple and cascaded.[16, 7] A simple re- 
vocation of access for subject sa removes authorization for subject s0. A cascaded revocation of access 
for subject sa removes authorization for subject sa and every subject st,t to which sa granted the same 
access, and every subject s^j to which *(,, granted the same access, and so forth. A cascaded revocation of 
a particular access permission of subject s„ can get complicated if subject j(, was granted that permission 
by 30 and another subject. There are several possible policies which could determine what to do in such 
a situation. We will assume that the appropriate policy is encoded in the CascadingRevoke method. 

One way to design class auth to support both simple and cascading revocations is as follows: 

autk 

[Object -.objId.Meth-.string, Users: uscrSct, 
Grantors: Gtt*erSel,GiveGrantors:Gu»erSe(] 

{OkToUse,Grant,GiveGrant, 
SimpleRevoke.CascadingRevoke} 

interface 

The Grantors attribute stores the set of subjects which are allowed to grant access to this method to other 
subjects. The GiveGrantors attribute stores the set of subjects which are allowed to pass the granting 
authority for this method to other subjects. Each of these attributes also stores, for each subject si, with 
grant or give-grant authority, respectively, the subject s„ which gave *6 that authority. (The domain of 
class GuserSet is V(subject x subject), where V(a) denotes the power set of a.) 

The access control information of the access control information of the target object is a set of valid 
subject identifiers; the comparison operator is set membership. 

4.2    Integrity 

In an object-oriented database model, access integrity is simply a special case of secrecy where the controlled 
method is state-changing. With access integrity, the subject's access control information must compare 
favorably with the target object's access control information before the method is invoked. 

An object-oriented data model based on protected groups can enforce data integrity by using rules 
in methods of an interface object. In [27], we propose an integrity model for object-oriented databases. 
Each integrity constraint is a first order predicate logic expression. The model constrains the results of 
functional methods. All comparison and other operators in constraint expressions are methods from the 
object set. The following constraint restricts the result of the method GetAge of each instance of employee 
to an integer greater than 0 and less than 120: 

Ve(employee(e) — Va(GetAge(e, a) -* (Less(e, 0, a) A Less(e, a, 120)))) (1) 

The constraint model is based on first-order predicate calculus, which unfortunately makes constraints 
rather unwieldy. Figure 2 gives a few examples of notational conveniences from [27] which make constraints 
far more palatable.  Using these, constraint 1 can be rewritten as follows: 

Ve € employee(e.GetAge > 0 A e.GetAge < 120) (2) 

518 



1. ti! as (2 is equivalent to -i == (^1,(2). 

2. 3i   €   employee(i. Get Salary   >   100000) is equivalent to 3i(e mployee(i) A 9a(GetSaIary(r, a) A 
Less(integer, 100000, a))). 

3. Vz,y   €    emp/oyee(x.GetID   ==   y.GetID   -»   1   asas   y)   is  equivalent   to  VrVy(emp/oi/ee(i) A 
emp/oyee(y) - Va(GetID(x, a) - V6(GetID(y, b) -== (o, 6) -== (z,,)))). 

4. Vr € emp/oyeeG5lSalary<10000(e.GetTax = 0) is equivalent to Vr(emp/oyee(r) —> Vo(GetSalary(i,o)A 
Less( inteyer, a, 10000) — V6(GetTax(i, b) -> Equal(inteyer, !>,0))))- 

Figure 2: Examples of notational abbreviations in integrity constraint expressions. 

In constraints 1 and 2, GetAge is a predicate which is true if the method e.GetAge a returns a, where 
e.GetAge is the GetAge method accessible to object e. The predicate Less is also associated with a method 
in e; Less(e,0,o) is true if r.Less(0,a) = true. This is the most general way to write a constraint: all 
operations must use methods of the objects. 

The primitive symbols in the language of constraint expressions include variables, constants, functions, 
predicates, logical connectives (A, V, —•, ->), quantifiers (V, 3), and parenthesis. A term is either a constant 
or /(ai, 02,..., o„) where / is an n-ary function and 01, aj,..., a„ are terms. A formula is P(t\, tj,. . ., t„) 
where P is an n-ary predicate symbol and t\, (2,..., tn are terms. If A and B are formulas, then AA B, Av 
B,A —• B, -<A,VxA, 3xA are formulas. A closed formula is one for which each variable is quantified. 

Integrity constraint expressions are restricted to be closed formulas as well as safe formulas. Intuitively, 
a safe formula is one in which the variables range over the extension of the database. Constraints may 
only use functional methods, and may ignore the possibility that a method may fail. A failing method in 
a constraint is a run-time error. 

Integrity constraint expressions can enforce common state integrity constraints, including domain, 
key, and structural constraints.[26] It can enforce value-based functional dependencies from the relational 
model, both within an object and across object classes. 

The discretionary access control technique based on protected groups presented in section 4.1.1 can be 
used to enforce Clark-Wilson [6] style integrity. Methods in the interface object are the TPs and objects in 
the protected group are the CDIs. Access triples are stored in class auth. Another approach to enforcement 
of Clark-Wilson style integrity is the Generalized Framework for Access Control;[3, 1, 2, 13] this can be 
applied to the object-oriented data model based on protected groups. 

4.2.1     Inference Control 

Kaushik has developed a simple technique for foiling tracker attacks on statistical databases3.[11] Vem- 
ulapalli has expanded the approach to provide a wider range of actions but uses the same underlying 
principles.[32, 31] For each query, the database system finds the query jet before computing the aggregate 
value. The system then duplicates a tuple in the query set, deletes a tuple in the query set, or does nothing 
to the query set. A requirement of this approach is that if two queries oj and 02 result in the same query 
set, the same perturbation action must be taken for both queries. 

Kaushik's approach can be adapted to the object-oriented data model based on protected groups. Let 
Aggregate be a method in interface object interface which returns an aggregate value from the protected 
group, and suppose subject 5Q invokes Aggregate. An outline of this method is as follows: 

1. Determine if subject sa is authorized to access Aggregate (e.g., by sending a message to auth).  If 
not, then stop. 

2. Find the query set. 

3. Use a function of the query set (e.g., the size of the query set) to take one of Kaushik's three actions 
to perturb the data: 

Kaushik developed his approach in the relational model, however, the results carry over to the object-oriented database 
model. 

519 



• Duplicate an object in the query set. Make this dummy object visible only to aa- 

• Delete an object in the query set.   This can be accomplished by temporarily removing aa's 
authority to access the object. 

• Do nothing to the query set. 

4. Compute the aggregate value from the query set. 

5. Reverse any action taken in step 3. 

5 Related Work 

This work is similar to work by Faatz and Spooner [8] and Jajodia and Kogan.[lO] In [8], Faatz and 
Spooner suggest an approach to discretionary access control for object-oriented engineering databases. 
Each component of a project has a set of implementation objects and an interface object. To activate 
a method in an implementation object, a user must send a message to the interface object which then 
forwards the message to the implementation object. 

This work is simpler than [8] in that the entire database can be enclosed in one protected group. 
Discretionary access, data integrity, and access integrity can be controlled from a single interface object. 

Jajodia and Kogan propose a mandatory access control mechanism for object-oriented databases which 
is based on message filtering.[lO] Each object is assigned a classification, and each subject a clearance as 
with the traditional Bell-LaPadula model. Messages are not allowed to flow from object to object directly; 
instead, they must pass through a message filter. The message filter lets the message go through only if 
the information would not flow from a high level to a low level object or subject. Our approach is more 
flexible because message filtering is explicitly part of the object-oriented data model rather than a built-in 
system function. 

McDermid and Hocking have devised an access control mechanism for software development environ- 
ments in [21]. In their model, the set of access modes for an object consists of the ability to invoke each 
method of that object. The database designer can choose the relative precedence of mandatory access 
control and discretionary access control. The model allows more than one policy for the same database 
(e.g., for guests and regular users), and one of the policies can override if there are conflicts. Apparently 
this is dependent on the application. McDermid and Hocking claim that this system can be generalized to 
an access control matrix between subjects and objects, which unifies mandatory and discretionary policies. 
Separation of duty rules can be enforced by specifying a policy which requires a set of users to access a 
method. 

6 Conclusion 

We have described an approach to integrity and secrecy in object-oriented database systems based on 
protected groups. A one-way protected group is a set of objects which will only accept messages from one 
or more interface objects. 

We have shown how discretionary access control, data integrity, access integrity, Kaushik's inference 
control technique, and the Clark-Wilson integrity model can be implemented with this approach. The 
object-oriented data model applies to distributed object-oriented systems if the integrity and security of 
messages can be guaranteed between nodes. 

Future work includes handling the inference problem, the aggregation problem and designing a mech- 
anism for mandatory access control. The aggregation problem occurs when an individual can surmise a 
sensitive data value by combining several nonsensitive data values from the database.[9, 5, 18] 

There are several possible approaches to mandatory access control. One approach is to follow the 
Generalized Framework for Access Control [3. 1, 2, 13], using a single protected group and rules to determine 
whether access is allowed. This approach is similar to the discretionary access control mechanism described 
earlier. We present a different approach in [24] using two-way protected groups. A two-way protected group 
is a one-way protected group in which each object may only communicate with an interface object of the 
same group, and each interface object may only communicate with other objects in the same group. An 
interface object of one group may be an implementation object in another group. A database is composed 
of several protected groups, where each protected group consists of objects from a single security level. 

520 



Acknowledgments 

The work of both authors was partially supported by Department of Defense grant #5-30296. The authors 
wish to thank John Campbell and Howard Stainer for their support and encouragement. This work is our 
own, however, and does not necessarily reflect the views of these other people. 

References 

[1] Marshall D. Abrams, Kenneth W. Eggers, Leonard J. LaPadula, and Ingred M. Olson. A gener- 
alized framework for access control: An informal description. In ISth National Computer Security 
Conference, October 1990. 

[2] Marshall D. Abrams, Jody Heaney, Osborne King, Leonard J. LaPadula, Manette Lazear, and In- 
gred M. Olson. Generalized framework for access control: Towards prototyping the ORGCON policy. 
In 14th National Computer Security Conference, October 1991. 

[3] M.D. Abrams, A.B. Jeng, and I.M. Olson. Unified access control: An informal description. Technical 
Report MTR-89W00230, MITRE Corporation, September 1989. 

[4]  Philip Bernstein and et al. The Laguna Beach report. SIGMOD Record, 18(l):17-26, March 1989. 

[5] John R. Campbell. From tuples to trusted subjects to TDI: A brief tutorial on trusted database 
management systems. In 14th National Computer Security Conference, 1991. 

[6] D.D. Clark and D.R. Wilson. A comparison of commercial and military/computer security policies. 
In IEEE Proceedings of 1987 Symposium on Security and Privacy, April 1987. 

[7]  Dorothy Denning.  Cryptography and Data Security. Addison-Wesley, 1982. 

[8] Donald B. Faatz and David L. Spooner. Discretionary access control in object-oriented engineering 
database systems. In Database Security IV: Status and Prospects, pages 73-84, 1991. 

[9] D.K. Hsiao. Database security course module. In Carl E. Landwehr, editor, Database Security: Status 
and Prospects, pages 269-302. North-Holland, 1988. 

10l Sushi] Jajodia and Boris Kogan. Integrating and object-oriented data model with multilevel security. 
In Proceedings of IEEE Symposium on Research in Security and Privacy, Oakland, CA, May 1990. 
IEEE. 

]  Nanda Kaushik. A new deterrent to compromise of confidential information from statistical databases. 
Master's thesis, Kansas State University, 1988. 

121 Carl E. Landwehr. Database security: Where are we? In Carl E. Landwehr, editor, Database Security: 
Status and Prospects. North-Holland, 1988. 

131 Leonard J. LaPadula. Formal modeling in a generalized framework for access control. In The Computer 
Security Foundations Workshop, III, June 1990. 

1  T.M.P. Lee. Using mandatory integrity to enforce commercial security. In IEEE Proceedings of 1988 
Symposium on Security and Privacy, pages 114-146. IEEE, 1988. 

15] SB. Lipner. Non-discretionary controls for commercial applications. In IEEE Proceedings of 1982 
Symposium on Security and Privacy, pages 2-10. IEEE, 1982. 

161 Teresa Lunt, Dorothy Denning, Roger Schell, and William Shockley. The SeaView security model. 
IEEE Transactions on Software Engineering, 16(6), June 1990. 

1 Teresa Lunt and Jonathon Millen. Secure knowledge-based systems. Technical Report SRI-CSL-90-04, 
SRI International, Menlo Park, CA, August 1989. 

18] Teresa F. Lunt. Aggregation and inference: Facts and fallacies. In IEEE Symposium on Research in 
Security and Privacy, May 1989. 

521 



[19] Teresa F. Lunt. Discretionary security for object-oriented database systems. Technical Report SRI 
Project 7543, SRI International, September 1990. 

[20] Frank A. Manola. A personal view of DBMS security. In Carl E. Landwehr, editor, Database Security: 
Status and Prospects. North-Holland, 1988. 

[21] John A. McDermid and Ernest S. Hocking. Security policies for integrated project support environ- 
ments. In D.L. Spooner and C.E. Landwehr, editors, Database Security, III: Status and Prospects, 
pages 41-74. North-Holland, 1990. 

[22] National Computer Security Center. A Guide to Understanding Discretionary Access Control in 
Trusted Systems. Washington, D.C., September 1987. NCSC-TG-003 Version-1. 

[23] National Computer Security Center. Integrity in Automated Information Systems. Washington, D.C., 
September 1991. C Technical Report 79-91. 

[24] James M. Slack and Elizabeth A. linger. Mandatory access control in an object-oriented database 
using protected groups. Submitted for publication. 

[25] James M. Slack and Elizabeth A. Unger. A formal model of object structure and inheritance for object- 
oriented database systems. In Proceedings of Great Lakes Computer Science Conference, Kalamazoo, 
Michigan, October 1991. 

[26] James M. Slack and Elizabeth A. Unger. A model of integrity for object-oriented database systems. 
Technical Report TR-CS-91-13, Kansas State University Department of Computer and Information 
Sciences, 1991. 

[27] James M. Slack and Elizabeth A. Unger. A model of integrity for object-oriented database systems. 
In 1992 Symposium on Applied Computing, Kansas City, March 1992. 

[28] Gary W. Smith. The Modeling and Representation of Security Semantics for Database Applications. 
PhD thesis, George Mason University, Spring 1990. 

[29] David L. Spooner. The impact of inheritance on security in object-oriented database systems. In 
Carl E. Landwehr, editor, Database Security: Status and Prospects, II, pages 141-150. North-Holland, 
1989. 

[30] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science Press, 
1988. 

[31] Kasinath C. Vemulapalli and Elizabeth A. Unger. Investigation of output perturbation techniques. 
Technical Report TR-CS-91-10, Kansas State University Department of Computing and Information 
Sciences, 1991. 

[32] Kasinath C. Vemulapalli and Elizabeth A. Unger. Output perturbation techniques for the security of 
statistical databases. In 14th National Computer Security Conference, October 1991. 

522 



PROVABLY WEAK CRYPTOGRAPHIC SYSTEMS 

John Higgins 
Brigham Young University 

Computer Science Dept., 3374 TMCB 
Provo, UT 84602 

and 

Cameron Mashayekhi 
WordPerfect Corporation, MS-M210 

1555 N. Technology Way 
Orem, UT 84057 

Abstract 

The quest tor absolute verification of uncompromisable software security has led to the development of a variety 
of crypto-systems. Publicized over-simplification of cryptanalysis with disregard to impracticality of most of the 
theoretical methods proposed, has caused a wide-spread paranoia among software users. Consequently, the quest 
for secure crypto-systems may in some respects have been too successful. There is evidence that most of the current 
standard crypto-systems have complexity beyond the nominal capacity of even the most well equipped and skillful 
cryptanalysis including agencies of government. The wide dissemination of computationally secure crypto-systems 
is of great concern to some agencies of government. Export restrictions on the sale of software with cryptographic 
features, is a serious impediment to U.S. based software companies. What is needed is the development of crypto- 
systems that provide adequate security for the purpose of the user and yet not so sophisticated as to lead to 
government prohibition of worldwide dissemination. This paper suggests methods to modify a current system so 
as to meet this need. 

Introduction 

Research into modern crypto-systems has been directed towards obtaining systems that have 
mathematically demonstrable levels of total security[9][19]. These systems have proven to be 
computationally secure in relation to the idealized methods of massive computational 
cryptanalysis. However, continuous publication of theoretical papers on computational 
cryptanalysis of these crypto-systems has driven the software users to constantly demand higher 
levels of security[ll]. This observation presents a serious problem for commercial developers 
of software. There is currently widespread consumer demand that even the most innocuous of 
commercial software systems, should include some cryptographic features[24]. In addition, the 
systems should have levels of security that are predictable and certifiable[4]. 

Five years ago the average user of a personal computer (PC), where the usual application is for 
word processing or spread sheet functions, would have been shocked at the notion that her 
efforts demanded a cryptographic system in order to maintain privacy. This is not surprising. 
There is a very natural human tendency to ascribe to any new system the effective attributes of 
the old.   The early methodology of automobile traffic control was based on experience with 

523 



ships at sea and wagon teams. Both of these familiar models quickly proved dangerously 
inadequate. In the same fashion, the average PC user equated electronic files with folders within 
a locked filing cabinet. A prospectus generated by a spread sheet and stored on a PC was the 
same as one done with pencil and slide rule and filed in a locked attache case. But the analogy, 
relative to privacy and security, were dangerously inexact. Most PC users are now aware of 
this and it is this fact that impels the attempted marriage of innocuous and widely used popular 
software and very sophisticated cryptographic systems[24]. 

The distinction relative to security between electronic file and filing cabinet is now widely 
appreciated in the business community. The fact that obtaining access to material stored in a 
computer system can be much easier than obtaining the same access to hard documents stored 
in a locked physical system is common knowledge. Indeed, the level of publicity relative to data 
security, or more precisely the lack of data security in large institutions has generated an attitude 
of concern on the part of software users. This attitude in turn has caused expressed demands on 
the developers of software to add security features to many popular and widely used software 
devices. [21] 

It is pointless to argue that much of this concern is not well founded. Data security experts 
know that most data security problems can be solved by the application of a relatively few and 
rather simple rules involving the physical surroundings of the systems and proper training of 
system users[21]. This fact notwithstanding, it would be economic suicide for any software 
company to suggest such an approach as an excuse for not including security features in their 
products. This is the reason why this is so rooted in the nature of competitive, consumer 
directed markets. In a consumer economy, businesses survive by meeting the needs of the 
customer. Customer needs are based in large measure not on actual physical demands but on 
states of mind. All knowledgeable commentators admit that an important aspect of American 
business genius was the recognition that vague feelings could be translated into a concrete need 
and this need into sales. Current software consumers have been convinced that they need the 
protection of add on cryptographic systems. Given this fact, no software manufacturer will 
prosper by trying to convince buyers that they do not need such feature when the competitors 
are willing to provide them[13]. 

Development of Cryptographic Systems 

Public demand for security features as outlined in the Introduction presents the software 
developer with a very difficult problem. Cryptographic systems are very difficult to successfully 
develop. This fact is well documented[2][4][18][19][20][22]. A developer generating a popular 
word processor has many issues which are absolutely essential to the success of the software. 
It is on these essential issues that the bulk of the development effort must concentrate. In 
addition to these essential tools, some cryptographic features must be added since that is what 
the current market demands. How should the developer proceed? What system should be 
included? Clearly the easiest approach would be to buy an off the shelf system and incorporate 
that system into the software. However, all current off the shelf systems are under export 
control. The manufacturer can not afford to forgo the export market. Similarly the manufacturer 
cannot afford to generate his own cryptographic system and cannot spend the time required to 

524 



have his own modifications of current systems certified by agencies of government. These facts 
present the software company with a serious dilemma. 

The problem of the export market probably needs some clarification. Since the vast bulk of the 
U.S. software industry sales are domestic it would seem reasonable for the manufacturer to use 
systems such as DES which are acceptable for domestic software and abandon the export market. 
Unfortunately the solution is not that simple. The problem of marginal return is crucial in the 
software industry. For software, the vast majority of the cost of manufacturing is in the 
development of the product. The production of the physical object conveying the software and 
its manual(s) are relatively insignificant. The marginal return on any sales above those that meet 
development costs are huge. In order to succeed, it is imperative to obtain those returns that 
entrepreneur risk funds in the development of software. It is not now possible for a responsible 
software company in today's market to limit its product distribution to the domestic market. The 
reason for this is that the relative cost of software development is now very large. Modern 
popular software demands very complex and capable programs that require large expenditure 
in their development. The offshore market is becoming more important in providing the vital 
marginal return that means the difference between success or failure. This reliance on out of 
country sales will become more pronounced in the future. This means that there is an urgent 
need for the development of cryptographic systems sufficiently strong so as to meet the needs 
of consumers and sufficiently weak so as to meet the certification standards for export[5]. 

On the issue of development it must be noted that for the manufacturer, time is absolutely of the 
essence. To a government agency, a six month process of certification may seem like blinding 
speed. For the software developer, a six week delay in the introduction of a given product may 
spell the difference between riches and bankruptcy. The dissonance on this issue should not be 
trivialized. It is very unlikely that the governmental agencies will be able to alter their behavior 
in order to accommodate the software companies. The realities of the current domestic market 
and the rise of foreign software developers suggest that competition in software manufacturing 
will only get worse. There is a real need for the development of standardized cryptographic 
systems which meet three criteria: 

(i)       These systems must be available to the software manufacturer at reasonable cost, 
(ii)       They must have the same relative level of accepted computational security as 

current systems such as DES, 
(iii)     The specific application must be capable of an expedited approval by government 

The first attribute is absolutely essential. The cost of development of new systems is an 
unnecessary expense not really germane to the general purpose of most software. The second 
property will be a consumer demand. Anyone who needs a security system should know what 
level of security the system provides. The third requirement is the sole reason for their being 
a problem in the first place. 

For the purposes of this paper the ban on export of capable cryptographic systems is an axiom. 
The argument that government ought to change its view of this matter will need to be addressed 
elsewhere.   For the software companies the issue of which cryptographic system to use is an 

525 



immediate one. The alteration of fixed government policy is based on historic experience, a 
matter of years if not decades. Software companies must survive in the short run or there is no 
long run. For them the problem is now and the attitude of the government must be taken as in 
some sense fixed. While some negotiation on the margins of this matter may be possible, it 
seems very unlikely that there will be any near term reversal of the export ban on high level 
cryptographic systems. 

Uses of DES 

Let us first examine the issue of why an established cryptographic system is important. As 
noted above, software development companies are not in the cryptography business. It is an 
area of development strewn with hazards that most commercial ventures are not well equipped 
to treat [3]. The most daunting problem is that of creating a credible system. The literature of 
modern cryptography is full of plausible and initially promising systems that were not capable 
of extensive development. As the survey by Brickell and Odlyzko rather poignantly 
demonstrates, knowledgeable investigators have invested large amounts of time and creative 
energy in the invention of systems that proved to be totally unreliable[22]. It is rather shocking 
how frequently these capable and well intended intellectual efforts have failed. This fact is not 
lost on the software developer. Developing a proprietary cryptographic system is almost sure 
to result in disaster. The paper by Kochanski is most instructive in this regard [17]. In this 
effort, the author was able to do a successful cryptanalysis of five cryptographic systems 
appended to popular software. The analysis demanded nothing more in the way of hardware 
than a PC. The type of failure outlined in this article is unacceptable for a well run commercial 
enterprise since it casts doubt on the capability and accuracy of the entire software package. The 
manufacturer is not going to waste time and resources trying to develop a new cryptographic 
system when the experience of the last decade has proven this to be a virtually impossible task. 

A related problem is that of customer acceptance. Knowledgeable customers are at least vaguely 
aware of the hazards inherent in the development of cryptographic systems. Even if a given 
company were able to develop a system whose level of security was predictable, convincing the 
potential customer of this fact would be difficult if not impossible. The area of cryptographic 
validity is another of those aspects of modern civilization where it is virtually impossible for the 
consumer of a product to usefully investigate the claims of the product. The fact that a given 
crypto-system may be difficult for the customer to break means nothing. Some external 
certification of quality is essential. It is for this reason that a reasonable modification of an 
existing accepted system such as DES is absolutely essential for the manufacturers. 

This leads to the examination of some provably weakened form of DES as the basis for a 
relatively low level cryptographic system appropriate for incorporation in widely distributed 
software.   The reasons for selecting DES are as follows. 

1. DES has a very high level of experimental security.[3]  The standard algorithm 
has been publicly available for some time. It has been extensively analyzed and 
no elementary method of cryptanalysis has been discovered[3]. Indeed, with the 
exception of a claimed chosen plain text statistical anomaly recently announced 
in the media[25], the only valid general method of cryptanalysis known to the 

526 



authors remains the brute force key matching method first suggested by Diffieand 
Hell man[14][10]. Even for somewhat smaller key spaces than the standard 56 
bits, brute force cryptanalysis of DES should be well beyond the capability of all 
but the wealthiest and most determined of private individuals. 

2. There are software implementations of DES that are relatively fast[8]. Well 
designed implementations when appended to most popular products should be 
almost invisible to the user. This is very important since while consumers want 
to be able to use encryption in a variety of ways with existing software, they are 
not willing to pay much if anything in software performance cost to obtain this 
feature. 

3. DES is cheap. The algorithm is public[23]. There are many off the shelf and 
public domain implementations of DES which software manufacturers of all sizes 
could quickly modify and install, if an appropriate weakened format could be 
designed. 

4. DES should be relatively easy to weaken. By reducing the key size and perhaps 
the number of iterations of the fundamental transformation seems plausible that 
precisely quantifiable reductions in security relative to the assumed level of 
security of the original algorithm can be obtained[6]. 

5. DES ought to be relatively non threatening. Since the algorithm has been around 
for some time and was originally proposed by the federal government it seems 
plausible that agencies of government have learned to accommodate themselves 
to its existence. If governmental concern on the amount of time needed to break 
full DES is an issue, as it seems to be, then a weaker form of DES should be 
more acceptable than any new proprietary system that is not trivial. 

The last point demands further discussion. When DES was first proposed as a standard for 
encryption it was widely assumed that it was inherently compromised so as to allow security 
agency cryptanalysis. This may or may not be the case. What is the case is that governmental 
agencies involved in national security seem reluctant to certify applications of DES for export. 
Devices such as home satellite television decoders are still export restricted when they include 
any of the systems that are based on the DES standard. This type of ban may just be an example 
of bureaucratic overkill relative to a system whose cryptanalysis is elementary given the right 
equipment and the right algorithms. But another interpretation of these facts does need to be 
addressed. As noted previously, the academic cryptanalysis community has been beating on 
DES for several years now. Not all members of this community can be plausibly described as 
being co-opted by agencies of the government of the United States. This certainly has at least 
the appearance of a good faith effort to discover weaknesses in the algorithm and none have been 
found[3]. It is arguable that the situation is just as it seems. That is, the DES algorithm is quite 
robust and there is no elementary trap door. If this were the case then it is not unreasonable to 
expect some degree of concern on the part of security agencies relative to widespread foreign 
sales of software using DES. 

527 



If it is in fact the case that the standard implementation of DES is a relatively secure system of 
encryption then for-export applications of DES will demand a provably weakened form in order 
to obtain export approval. Which leads to the question of demand for a demonstrably weak 
cryptographic system. In this regard much of the public research in cryptography is of little 
practical significance and leads to clearly erroneous conclusions. Someone who buys a 
combination lock for a tool shed does not expect to get a time-delayed bank vault door. That 
would be silly. The quality of the lock should be in some sense appropriate to the value of the 
material being protected and the construction of the general containment structure. No one can 
reasonably expect the encryption features of a popular software package to be resistant to all 
methods of cryptanalysis. The user can reasonably expect that the security features will protect 
against common threats. It does not take ultimate cryptographic sophistication to protect against 
the types of intrusions normal in security breaches. Indeed, cryptanalysis is much more difficult 
than it seems. Dedicated amateurs with access to reasonably powerful computer systems 
wrestled unsuccessfully with the Beal ciphers[14]. Less well educated amateurs with no greater 
computational capacity and far less time will not quickly and easily decrypt even weak forms 
of DES. 

Short Key DES 

A discussion of a modified or weakened DES requires a benchmark of analysis to which the 
relative weakening can be compared. This paper uses the exhaustive search methodology first 
outlined by Diffieand Hellman in 1977[10]. It does say something for the sturdiness of the DES 
algorithm that the intervening years have produced no methods significantly superior to the key 
search method proposed fifteen years ago. The following analysis is conducted relative to the 
following assumptions: 

(i) the exhaustive search must be executed on available hardware of a type that is 
likely to be in the possession of adversaries. The ability to spend thousands of 
dollars on dedicated hardware is clearly beyond the capacity of all but a 
vanishingly small set of security adversaries[26]. A record of computer criminals 
exists[l]. There are virtually no entries for large criminal organizations or other 
such well funded and highly organized entities. 

(ii) A reasonable number of known plain text characters would be available to the 
cryptanalysis. However, there is no capacity for a chosen plain text attack. In 
most low level applications, chosen plain text attack is well beyond the capacity 
of the typical adversary. 

(iii) A single search cycle can be completed in one micro-second. While it does seem 
plausible that widely available hardware can be programmed to perform one 
algorithm iteration and comparison in time that is of the order of one micro- 
second, order of magnitude improvements on this standard do not seem to be 
easily obtained[10][17]. Something like 100 mips are currently available in 
standard hardware. Even if 1000 mips were to be achieved in a decade, there 
should be no appreciable degradation in the one microsecond standard since a 

528 



programmed DES iteration and comparison in 100 machine instructions seems 
difficult to achieve. 

(iv) There is an elementary DES key reduction transformation that does not reduce the 
relative difficulty of DES cryptanalysis. This is the most tenuous assumption of 
the discussion. It is not at all clear that there is a method for extending a 
randomly selected k-bit key(k<56) to a 56 bit key so that cryptanalysis of DES 
still requires exhaustive key search over the 2k element key space. A discussion 
of this question is beyond the scope of this paper. 

Garon and Outerbridge[12] have produced a complete an exhaustive analysis of the statistics and 
cost of cryptanalysis of DES by hardware and software. Again, in their case the assumption is 
made that the adversary has the limitless capabilties to support the cost and effort in this matter. 
The following table gives the time to obtain one solution, relative to the restricted key space. 

Speed of Processor Time required   to exhaust  the reduced keyspace of 
DES(40/56) 

Key-test per second Years Months Weeks Days 
1 Million 1,640 19,680 85,280 596,960 
2 Million 820 9,480 42,640 298,480 
4 Million 410 4,740 21,320 149,240 
32 Million (by 1995) 51 2,370 10,660 74,620 
256 Million (by 2000) 6 1,185 5,330 37,310 

Given that the problem of reduced key extension could be safely resolved, the software 
manufacturer and the related government agencies may be able to agree upon a standard which 
is mutually acceptable to all parties. If the manufacturer consented to accept a standard that was 
pre-defined as being acceptable for export the relevant export license could be granted in a 
matter of days as opposed to months. The manufacturer would then have the obligation of 
informing purchasers of the relative strength or weakness if you prefer, of the protection system 
included. The disclaimer would indicate that the purchaser was buying a product that would 
give adequate protection against the type of threat most commonly found in security problems. 
It would by implication if not directly indicate that this security feature is not proof against 
intrusion by the technology available to the security agencies of nation states nor perhaps to the 
capabilities of massively wealthy and highly organized criminal conspiracies. In any event all 
parties to the compact would be as well informed as current public information allows. Given 
current legal realities, that is about as much as can reasonably be expected[16]. 

Conclusion 

The problem of export restrictions on popular software is a real one. This problem will become 
worse as the demand for encryption protection increases and the export market becomes 
relatively more important to the manufacturers. The mutterings of academics not withstanding, 

529 



a software company must live in the world that exists. In this world, the export of software that 
includes the standard implementation of DES is not permitted by government fiat. The 
resolution of edicts such as this may well lie far in the future. What does seem clear is that for 
the foreseeable future there will continue to be governmental restrictions on the export of any 
cryptographic system that is too capable. In this environment, a suitably weak form of a 
familiar and well tested system for full document encryption such as DES does seem like a 
plausible short term solution. 

530 



References 
111 Anne W. Branscom, "Rogue computer programs and computer rogues: Tailoring the punishment to fit the 

crime," Rutgers Computer and Technology Law Journal, vol. 16, no. 1, 1990. 

[2| G. Brassard, "A note on the complexity of cryptography," IEEE Trans. Informat. Theory, vol. IT-25, pp. 

232-233, 1979. 

[3] Ernest F. Brickell, Andrew M. Odlyzko, "Cryptanalysis: A survey of recent results," in Proceedings of 

the IEEE, vol. 76, no. 5, pp. 578-593 May 1988. 

[4| Carl M. Campbell, "Design and specification of cryptographic capabilities," IEEE Commun. Mag.,, pp. 

15-19, Nov. 1978. 

|5) Eric K. demons, "Evaluation of strategic investments in information technology," Communications of the 

ACM, vol. 34, no. 1, Jan. 1991. 

|6| D.   Chaum,  J.   Evertse,   "Cryptanalysis of DES with a reduced number of rounds,"  in Advances  in 

Cryptology-Crypto 85. New York, NY: Springer Verlag, pp. 192-211. 

|7| C. A. Deavours, L. Kruth, Machine Cryptography and Modern Cryptanalysis. Norwood, MA: Addison- 

Wesley, 1983. 

|8| D. E. R. Denning, Cryptography and Data Security. Reading, MA: Addison-Wesley, 1983. 

|9| W. Diffie, E. Hellman, "New directions in cryptography," IEEE Trans. Informat. Theory, vol. IT-22, pp. 

644-654, 1976. 

|I0|        W. Diffie, E. Hellman, "Exhaustive cryptanalysis of the NBS Data Encryption Standard," Computer, vol. 

10, pp. 74-84, 1977. 

11 11        W. Diffie, "The first ten years of Public-Key cryptography,"   in Proceedings of the IEEE, vol. 76, no. 

5, pp. 560-577 May 1988. 

112|        Gilles Garon, Richard Outerbridge, "DES watch: An examination of the sufficiency of Data Encryption 

Standard for financial institution information security in the 1990's," ACM Press., vol. 9, no. 4, pp. 29-45, 

1991. 

113)        T. Haight, "Tales From Decrypt," Network Computing Magazine, vol.*2, no. 7, pp. 75-83, July 1991. 

114]        C. Hammer, "Beale Ciphers," Cryptologia, vol. 3, no. 1, pp. 9-15, Jan. 1979. 

1151        M. E. Hellman et al., "Results on an initial attempt to cryptanalyze the NBS Data Encryption Standard," 

Tech. Rep. SEL 76-042, Stanford University, 1976. 

116]        Russell Kay, "Infosecunty in the 1990s." ISPNews, vol. 2, no. 6, pp. 1, Nov. 1991. 

|I7|        M. Kochanski, "A survey of data insecurity packages," Ctyptologia, vol. 11, no. 1 pp. 1-15, Jan. 1987. 

|18|        H. W. Lenstra, Jr. "On the Chor-Rivest Knapsack cryptosystem," Journal of Cryptology, vol. 3, no. 3, 

pp. 149, 1991. 

[I9|        Micheal Merritt, "Theory of Cryptographic Systems: A critique of Crypto Complexity", in Distributed 

Computing and Cryptography. Providence, Rhode Island: American Mathematical Society, and Baltimore, 

MD: Association for Computing Machinery, 1989. 

531 



[20|        S. Murphy, "The cryptanalysis of FEAL-4 with 20 chosen plaintexts," Journal of Cryptology, vol. 2, no. 

3, pp. 145, 1990. 

[21 ]        National Research Council, Computers at Risk, Safe Computing in the Information Age. Washington, DC: 

National Academy Press, 1991. 

[22]        A. M. Odlyzko, "The rise and fall of Knapsack cryptosystems", in Cryptology and Computational Number 

Theory. Providence, Rhode Island: American Mathematical Society, 1989. 

[23]       William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling, Numerical Recipes in C, 

Tlie Art of Scientific Computing. New York, NY: Cambridge University Press, 1988. 

[241        Corey H. Schou, "Hard times: Information security in a changing world," ISPNews, vol. 2, no. 5, Sep. 

1991. 

[251        A. Shamir, "On the security of DES," in Advances in Cryptology-Crypto 85. New York, NY: Springer- 

Verlag, pp. 280-281. 

|26]        Clifford Stoll, The Cuckoo's egg, Tracking a spy through the maze of computer espionage, New York,NY: 

Pocket Books, 1989. 

Additional Readings 
E. F. Brickell, J. H. Moore, M. R. Purtill, "Structure in the S-Boxes of the DES (extended abstract), in Advances 
in Ciyptology-Ciypto 86. New York, NY: Springer Verlag, pp. 3-8. 

R. A. Demillo, G. I. Davida, D. P. Dobkin, M. A. Harrison, R. J. Lipton, Applied Cryptology, Cryptographic 
Protocols, and Computer Security Models. Providence, Rhode Island: American Mathematical Society, 1981. 

W. F. Ehrsam, S. M. Matayas, C. H. Meyer, W. L. Tuchman, "A cryptographic key management scheme for 
implementing the Data Encryption Standard," IBM System Journal, vol. 17, no. 2, pp. 106-125, 1978. 

Peter Fagan, "Experience of Commercial Security Evaluation," in Proceedings of the 14th National Computer 
Security Conference, vol. 1, Oct. 1991. 

R. Force, "Methods and Instruments for Designing S-Boxes," Journal of Cryptology, vol. 2, no. 3, pp. 115, 1990. 

Zvi Galil, Stuart Haher, Moti Yung, "Security against Chosen-Ciphertext Attack", in Distributed Computing and 

Cryptography. Providence, Rhode Island: American Mathematical Society, and Baltimore, MD: Association for 
Computing Machinery, 1989. 

W. Mark Goode, "Crypto standards: A thousand points of connection?," ISPNews, vol. 2, no. 5, pp. 43, Sep. 1991. 

B. S. Kaliski, R. L. Rivest, A. T. Sherman, "Is the Data Encryption Standard a group (result of cycling 
experiments on DES)," J. Ciyptology, vol. 1, no. 1, pp. 3-36, 1988. 

Neal Koblitz, A Course in Number Tlieory and Cryptography. New York, NY: Springer-Verlag, 1987. 

A. G. Konheim, Cryptography, A Primer. New York, NY: Wiley, 1981. 

Stephen M. Lipton, Stephen M. Matyas, "Making the Digital Signature legal and safeguarded," Data 
Communications Magazine, pp. 41-52, Feb. 1978. 

532 



James L. Massey, "An introduction to contemporary Cryptology," in Proceedings of the IEEE, vol. 76, no. 5, pp. 
533-549 May 1988. 

Terry Mayfielcl, Stephen R. Welke, John M. Boone, Catherine W.    McDonald, "A framework for advancing 
integrity standardization," in Proceedings of the 14th National Computer Security Conference, vol. 1, Oct. 1991. 

C. H. Meyer, S. M. Matyas, Cryptography: A New Dimension in Computer Data Security. New York, NY: Wiley, 
1982. 

.1.  H.  Moore, G. J.  Simmons,  "Cycle structure of the DES with weak and semiweak keys," in Advances in 
Ciyptology-Ciypto 86. New York, NY: Springer-Verlag, pp. 9-32. 

Robert Morris, N. J. A. Sloane, A. D. Wyner, "Assessment of the National Bureau of Standards proposed Federal 
Data Encryption Standard," Cryptologia, vol. 1, no. 3, pp. 281-291, 1990. 

D. B. Newman, Jr., R. L. Pickholtz, "Cryptography in the private sector," IEEE Commun. Mag., vol. 24, pp. 7- 
10, Aug.  1986. 

K. Nishimura, M. Sibuya, "Probability to meet in the middle,''Journal of Cryptology, vol. 2, no. 1, pp. 13, 1990. 

N1ST,   "Data  Encryption Standard (DES),"  in FIPS publication 46,  National Technical Information Service, 
Springfield, VA, Apr.  1977. 

NIST,   "Guidelines tor implementing and using the NBS Data Encryption Standard,"  in FIPS publication 74 , 
National Technical Information Service, Springfield, VA, Apr. 1981. 

NIST, "DES modes of operation," in FIPS publication 81, National Technical Information Service, Springfield, VA, 
Dec.  1981. 

Donn Parker, "Restating the Foundation of Information Security," in Proceedings of the 14th National Computer 

Security Conference, vol. 2, Oct.  1991. 

Charles R. Pierce, "Standardized Certification," in Proceedings of the 14th National Computer Security Conference, 
vol. 2, Oct.  1991. 

Charles R. Pierce, "Toward certification, a survey of three methodologies," in Proceedings of the 14th National 
Computer Security Conference, vol. 2, Oct. 1991. 

Arto Salomaa, Public-Key Cryptography, Berlin, Heidelberg, New York, NY: Springer-Verlag, 1990. 

Miles E. Smid, Dennis K. Branstand, "The Data Encryption Standard: Past and future," in Proceedings of the IEEE, 
vol. 76, no. 5, pp. 550-559, May 1988. 

533 



RE-USE OF EVALUATION RESULTS 

Jonathan D. Smith 

Admiral Management Services Ltd. 
Commercial Licensed Evaluation Facility 

Kings Court, 91-93 High Street 
Camberley, Surrey, GU15 3RN 

ENGLAND 

ABSTRACT 

As evaluated products become more widely available and better focused at purchaser's requirements, re-use of 
previous evaluation results becomes an increasing priority. This is particularly true if 'monolithic' evaluations are 
to be avoided for systems that incorporate previously evaluated products. For systems that incorporate previously 
evaluated products, evaluation becomes more cost effective if it is possible to benefit from the results of the previous 
product evaluations. This discussion paper addresses this issue through a discussion of the Information Technology 
Security Evaluation Criteria [ ITS EC] and the process of composition of components. It then proposes a possible 
way forward for the re-use of evaluation results.   The paper assumes a working knowledge of the ITSEC. 

INTRODUCTION 

A key issue in the development and evaluation of secure systems and products (referred to by ITSEC as Targets 
Of Evaluation - "TOEs") is: how can the results of previous evaluations (in terms of evaluation level, functionality 
and strength of mechanisms) be re-used in another development/evaluation? This issue is difficult to resolve and, 
in Europe to date, has been left to the discretion of the certifiers and accreditors of TOEs. 

This paper introduces a number of aspects of ITSEC that are relevant to re-use of evaluation results, including: 

- Flexibility of approach: Evaluation is made more flexible by splitting the functionality of a TOE from the 
confidence held in a TOE to meet its security target (for instance limited functionality can now be evaluated to 
a high degree of confidence). However, the cost of this approach is that a diverse range of functionality and 
confidence has to be taken into account when evaluation results are re-used 

- The difference between effectiveness and correctness: The ITSEC identifies these two properties of a TOE as a 
starting point for the evaluation criteria, thereby forcing them to be considered explicitly during any treatment of 
the re-use issue 

- The assumption that systems and products can always be considered in the same way: The veracity of this 
assumption cannot be guaranteed when the re-use problem is addressed. 

The paper then discusses composition of components. A number of options to address the re-use issue are proposed. 
The implications of each option are examined with reference to a simple example.  Those options considered are: 

- Assurance profiles, as permitted by the ITSEC 

- Mixing rules, for generating a single functionality statement/evaluation level from assurance profiles 

- Expanding each relevant criterion of the ITSEC. 

Finally, conclusions are drawn on combining the above options to enable a way forward for the re-use of evaluation 
results. 

534 



THE ITSEC FRAMEWORK 

Introduction 

This section introduces the relevant aspects of the ITSEC in order to provide a foundation for the discussion of 
composition of components. This paper assumes a working knowledge of the terminology and concepts used in 
[ITSEC] beyond the following paragraphs. 

Development Model 

The assumed ITSEC development model is given in Figure 1. 

CORPORATE SECURITY POLICY 

SECURITY TARGET 

SBCURTTY ENFORCING FUNCTIONS 
STRENGTH OP MECHANISMS 

TARGET EVALUATION LEVEL 

ARCHITECTURAL DESIGN 

DETAILED DESIGN 

CONFIDENCE 
EFFECTIVENESS IMPLEMENTATION 

OPERATIONAL ENVIRONMENT 

TOE 

C C 
O 0 
N R 
P R 
I E 
D C 
E T 
N N 
C E 
E S 

S 

Figure 1 

Notice that the figure assumes a single layer of Detailed Design. The ITSEC, however, identifies a design hierarchy 
within the Detailed Design. The assumption has been made for the sake of simplifying the figure and the discussion 
that follows. 

Security enforcing functionality is first identified in a security target (for instance as a set of security enforcing 
functions). A security enforcing function is identified in order either to counter a specific threat (more likely for 
a system) or to meet a specific security objective (more likely for a product). 

A TOE is made up of components which may themselves be made up of components. The ITSEC defines a 
component as an identifiable and self-contained portion of a TOE, and identifies a 'basic component' at the lowest 
level of design. A TOE's security target can therefore be refined into a number of security enforcing, security 
relevant and other components. It should be noted that a security enforcing component may be refined further into 
security enforcing and security relevant components. 

The Architectural Design identifies the first allocation of functions to components. The Architectural Design 
therefore identifies the separation between security enforcing and other functionality. 

535 



The Detailed Design (hierarchy) identifies further components. Security irrelevant components can be identified 
by ensuring that, at any design phase, whatever functionality they implement, and whatever behaviour they exhibit 
at their interfaces, providing that the security enforcing and security relevant components operate correctly, the TOE 
continues to operate securely. 

Security relevant components can be identified as those components that are not security irrelevant components but 
whose abstraction is not defined in the security target (as one or more security enforcing functions). 

Security enforcing components are components that are not security irrelevant components and whose abstraction 
is identified in the security target. 

Flexibility of Approach 

Traditionally, a key component of a secure product or a system has been the reference monitor. This component 
provides the foundation for the Trusted Computing Base as defined in [TCSEC]. The reference monitor concept 
has been 'loosened* in the ITSEC to allow secure products (and systems) to encompass more than just confidentiality 
(and mediation between subjects and objects). However, in order to compensate for this more flexible approach, 
separation requirements on the Architectural Design are made explicitly by the ITSEC. Therefore, for TOEs to 
implement a correct access control policy at higher evaluation levels the requirements of the reference monitor 
concept still hold; i.e. architectural separation of the component that implements the access control requirements 
is still required. 

However, if access control requirements are not addressed through the use of a component that mediates accesses 
to objects by subjects, which is both tamper resistant and small enough to be subject to analysis and (complete) tests, 
then the effectiveness of the developer's proposed solution has to be considered. 

Effectiveness and Correctness 

Correctness is concerned with correct refinement of security enforcing functions through the representations of a 
TOE. Effectiveness is concerned with the ability of a TOE to meet its security objectives or counter threats when 
the TOE is considered as a whole. 

Effectiveness and correctness are complementary in the ITSEC framework; sometimes covert channels are an aspect 
of correctness (if requirements about them are specified in the security target) and sometimes effectiveness. 

Systems and Products 

Broadly, systems and products can be treated in similar ways for evaluation purposes, and therefore criteria can be 
written for TOEs as either systems or products. However, there are fundamental differences between systems and 
products: 

- A system in its broadest IT context is part of an organisation which performs particular functions and which 
includes both a TOE and its environment (users etc.) working together 

- A system, in TOE terms, therefore includes an operational environment (for instance secure operating 
procedures), and the threats to the system can be countered through the use of physical, procedural or personnel 
measures, as well as through electronic countermeasures (the first description of which forms the set of security 
enforcing functions specified in the security target) 

- A product, by definition, has no specific system or organisation of which it is a part. In other words, the 
environment for a product is not as well defined as for a system -assumptions about threats (and even assets) will 
have to be made in a 'product rationale' (probably through the use of security objectives). 

536 



To summarise, a system is a component of an organisation, itself made up of components made up of components 
etc. A product may be made up of components. A product, when re-used in a TOE (at the Architectural or 
Detailed Design representations) will be incorporated into that TOE as a component. 

When a product is purchased for use within a system the purchaser 'accredits' the product. For systems, a system 
is usually accredited by a third party to ensure that the information that the system processes will remain secure. 

COMPOSITION 

Introduction 

In order to discuss re-use of a component a description of both a component and composition is required. A 
component is an identifiable and self-contained portion of a TOE. Any component can be described by a statement 
of its major attributes: 

- Its functionality 

- The external interface which it offers its environment 

- The assumptions that it makes about its environment in order for it to work correctly. 

This is true for the lowest level of component (basic component) or a component which is a composition of two or 
more components (a target component). The definition of a component is therefore recursive. This is an important 
point because a component can be broken down into further components until a basic component is finally reached. 
An example is presented in Figure 2. 

Composition is the 'bottom up' process of 
combining components in order to meet the 
requirement on the ultimate target component 
(in the case of evaluation the TOE). A target 
component could therefore be any of: 

- A system 

- A product 

- A component of a product or system. 

Relevance to Development and Evaluation 

Personal Computer 

T 
KEYBOARD 

• 
CPU 

T 
DISPLAY 

T 
OAPHICICAU) 

Figure 2 

To develop a target component (for instance a TOE) the three major attributes of the target component will be 
specified in the overall design for the target component. These specifications form the predicates upon the result 
of the composition process that have to hold in order that the target component is implemented both correctly and 
effectively. 

Notice that the definition of a component is, in essence, a re-statement of a product's security target: the ITSEC 
has already assumed that a product will be designed as a component. 

The statement of functionality for the target component can specify either security enforcing, security relevant, or 
security irrelevant functions. The functionality statement can range from a complete security policy to a description 
of one necessary property of a component. 

537 



The functionality which a component's interface provides can be either services to be exploited by another 
component or services delivered to a user. When components are composed the interface can therefore be a 
consumer interface or a producer interface. The precision of description of the interface and the functionality that 
it delivers depends on the component's original target evaluation level. 

There are two issues to consider regarding the assumptions that the component makes about its environment: 

- Firstly, the assumptions made regarding the non-IT services it relies on in order to function correctly and 
effectively (e.g. for confidentiality requirements that an attacker cannot physically access/change hardware - a 
secure environment encapsulates the TOE) 

- Secondly, assumptions made about the IT services (external to the component) it uses (i.e. requires in order to 
function correctly and effectively) through its interface. 

It should be noted that the greater the level of self-protection (for instance tamper-proofing) built into a component, 
the fewer assumptions about its environment need to be made for it. Any assumptions need to be stated as part of 
the component's specification. 

This discussion has highlighted an obvious issue: at what stage in the development process is re-use of a component 
relevant to evaluation? It is asserted here that components can only be re-used at the Architectural and Detailed 
Design levels. A component cannot be re-used as part of the implementation of a TOE without having been 
introduced at a higher design representation: to re-use a component in the implementation, its intended use must 
have been specified in at least the Detailed Design. 

However, there is a side issue here: a security target may identify specific components to be re-used (for instance 
a specific hardware platform). If this is the case then the security target has already started to specify the 
Architectural Design for the TOE. Further, a security target also specifies a strength of mechanisms rating. A 
mechanism can be considered to be specified at the Detailed Design level. Therefore the security target has already 
started to specify the Detailed Design for the TOE. 

Problem Summary 

The discussion above has treated components as 'black boxes'. The primary effect of introducing an additional 
attribute of a target component, that of its target evaluation level, is that the evidence required to meet the evaluation 
level reveals to the evaluator some of the target component's functionality, interface and environmental assumptions. 
From this point onwards this paper assumes that the target component is the TOE to be evaluated. 

The TOE will have been the result of a composition process. The evaluation level that the TOE is aimed at will 
therefore also reveal to the evaluator some of the internal functionality, interface and environmental assumptions 
for each of the components composed into the TOE.  This is necessary for confidence in the TOE to be obtained. 

In summary, for secure developments the following must hold: 

- The TOE, and therefore each component that it contains, must be correctly implemented - this means that the 
requirements on the TOE must be upheld correctly by the sum of the functionality provided by each component 

- All interfacing between components must 'match' 
- The assumptions that each component makes about its environment must be upheld by the TOE 
- Any known vulnerabilities in any of the components must not become exploitable in the TOE. 

The following problems with demonstrating the above often occur: 

- The functionality of the TOE is not fully provided by the functionality of the components - often components are 
re-used in different ways for different purposes than they were originally intended (particularly true when non- 
evaluated components are re-used in a TOE that is to be evaluated) and therefore bespoke components are needed 

538 



- Interfacing between components does not match because components only use subsets of the interfaces provided 
by other components or the interface descriptions are specified at different granularities 

- Environmental assumptions for the TOE are different to those made for individual components when the 
components were designed 

- The confidence in the secure operation of each component (and therefore the confidence in the absence of 
exploitable vulnerabilities in the TOE) is different - the TOE has an assurance profile. 

It should therefore be clear that some form of evaluation is always required for TOEs even when all components 
(products) that are re-used have been previously evaluated to the same level as that specified for the TOE. 

GENERIC GUIDANCE BASED ON DISCUSSION OF COMPOSITION 

Generally, the results of correctness assessment can be re-used for the internal functionality and interface of a 
component. 

Effectiveness is concerned with compositions and addresses interfacing to the user, environmental assumptions and 
vulnerabilities within and between components. It should be noted that a component may contain vulnerabilities 
which become exploitable only after its incorporation into the TOE. Therefore effectiveness assessment must always 
be re-performed whenever composition of components is undertaken. 

In terms of the effectiveness of the composition of components: 

- Suitability analysis has to establish whether the security enforcing functions for the TOE can be upheld by the 
individual statements of functionality for each component of the TOE 

- Binding analysis must then be performed on the TOE to ensure that the interfacing and assumptions of each 
component are upheld 

- Construction vulnerability analysis must be performed on the TOE to ensure that vulnerabilities within each 
component do not become exploitable as a result of the composition - the vulnerabilities of the components must 
be listed in the report from their previous evaluation 

- Ease of use analysis must be performed on the TOE. 

OPTIONS 

Introduction 

A variety of options for accommodating re-use of evaluation results exist.  Those considered here are: 

- Assurance profiles 
- Mixing rules for generating a single functionality statement/evaluation level from confidence profiles 
- Expanding each relevant criterion of the ITSEC 
- A combination of the above. 

Assurance Profiles 

Assurance profiles can be used (the ITSEC does make reference to these in Chapter 1). Assurance profiles allow 
different sets of security enforcing functions to be evaluated to different evaluation levels through the use of multiple 
security targets. 

It is postulated here that what is actually required is: 

- An overall system security target - which identifies one required strength of mechanisms rating, the security 
enforcing functions together with their allocation to components, and the target evaluation levels for each 
component (the target evaluation levels for each component will be determined based on a threat distribution assessment) 

539 



- Individual security targets for each component - identifying the relevant security enforcing functions etc. and the 
assumptions regarding the environment of the component made for the component to work securely. 

To re-use the results of a previous evaluation of a component, the developer would then have to produce a rationale 
as to how the functionality expected from the previously evaluated component is consistent with the previously 
evaluated functionality: functionality of the component that was previously evaluated must conform to its new 
predicates specified in its new security target. 

This is clearly impractical for products without a clear statement of 'mixing rules' (see below), for a product may 
have a rating of [[E5,F-B2],[E2,F-**]] which would be very difficult to incorporate sensibly into a system. 
However, in the absence of any prescriptive guidance, an assurance profile may be acceptable to system accreditors. 

Mixing Rules 

Ideally, rules are required for composing components such as a security enforcing e.g. [E5.F-B2] component with 
a security relevant e.g. [E3,F-**J component to produce a [E5,F-B2] system. However, the discussion above 
demonstrates that the internal functionality of the security relevant [E3,F-**] component may result in an invalid 
composition that fails to meet the [E5, F-B2] requirement without further work being performed by the developer 
(and also see [TDI]). 

However, this form of composition may be possible given the next option - extensions to the criteria. 

Expansion of the Relevant ITSEC Criteria 

A key aspect of the discussion above is the fact that components can be re-used only at the Architectural and 
Detailed Design representations. This results in a limited impact of re-use on the criteria that can be resolved by 
updating the individual criteria. 

The ITSEC criteria for Architectural and Detailed Design would then need to include rules such as: 

If a security enforcing component is specified then 
If previously evaluated to > = overall target evaluation level then 

Previous correctness assessment results are valid 
If previously evaluated < overall target evaluation level then 

Do additional correctness assessment actions, for overall target level, beyond previous evaluation level 

{NB: Additional correctness actions include those for development environment etc.} 

If a security relevant component is specified then 
If previously evaluated to > = [overall target evaluation level-1] then 

Previous correctness assessment results are valid 
If previously evaluated to < [overall target level-1] then 

Do additional correctness assessment actions, for [overall target level - 1], beyond previous evaluation level 

Do effectiveness assessment at overall target evaluation level or highest evaluation level specified for a component 

Of course, it may be the case that the additional evidence required for correctness (beyond the previous evaluation 
level for the component) cannot be supplied. Then the proposed TOE would have to fail evaluation at its overall 
target evaluation level. 

It should be noted that the suggested update of the criteria in the way that security relevant components are evaluated 
has an impact on all evaluations - not just those where re-use is an issue. 

These are just examples to highlight what may be possible (and in fact relate to the inheritance aspect of 
decomposition identified in safety critical standards such as DEF STAN 00-56 [DEF-STAN]). 

540 



Re-use of Strength Ratings 

Strength ratings can be re-used according to the strict rule that the rating of high, medium or low of the individual 
components must be greater or equal to the strength rating claimed for the TOE. 

AN EXAMPLE COMPOSITION 

Introduction 

Consider the case of an information management system to be implemented using a bespoke application e.g. bespoke 
application software (including a Human Computer Interface - "HCI") together with two further components: 

- An 'off the shelf database management system (COMP1) 

- An underlying operating system/hardware platform (COMP2). 

The new system is targeted at an evaluation level of E3. The security functionality required is based upon the F-Bl 
functionality class, with additional availability and integrity requirements. In this example of composition many 
design options are available to the developer. 

Accounting And Audit Design Options 

Some of the design options for meeting the accounting and audit requirements for this example are now considered 
further.   The design options considered here are: 

- Exploit the operating system services available for both accounting and audit purposes (Option 1) 

- Exploit the operating system accounting services and develop a bespoke audit tool (Option 2) 

- Exploit the operating system accounting services and integrate a commercially available audit product (Option 3). 

Option 1 

The accounting and audit components of the operating system are to be re-used in the system. These are classed 
as security enforcing components for the system and hence must be provided by an operating system previously 
evaluated to E3. (Note that if requirements on these components were not specified in the security target for the 
system, then they may have been classed as security relevant or even security irrelevant components.) 

The set of predicates on the accounting and audit components are specified in the information management system 
security target. The previously evaluated operating system security target must therefore be consulted to ensure that 
the internal functionality will implement the predicates assumed for the components. 

The previous Evaluation Technical Report for the operating system will have to be consulted to ensure that there 
are no vulnerabilities that could become exploitable in some way in the new system context (as part of the new 
system's construction vulnerability analysis). 

During detailed design the interfacing to the accounting and audit facilities will have to be addressed. For instance, 
the HCI interface will have to be determined. 

541 



In summary, the correctness of the previous evaluation results can be assumed. However, the effectiveness 
assessment will address: 

- The suitability of the accounting and audit components of the operating system through a new suitability analysis 
(which examines the original operating system's security target) 

- The binding of the accounting and audit services with the actual system implementation (and the HCI in particular) 
- Any potential system construction vulnerabilities introduced - including any raised during the previous evaluation 
- The ease of use of the new system implementation. 

Option 2 

The major difference from Option 1 in using a bespoke auditing application is that the implementation of the audit 
trail will form part of the evaluation. The auditing application will have to be targeted at E3 and developed and 
evaluated accordingly. 

Option 3 

The major difference of this scenario from the previous two options is that the auditing product will either have to 
have been previously evaluated or will have to form part of the development/evaluation at E3 - all the deliverables 
to the evaluation associated with E3 must be available to the evaluators for the 'monolithic* evaluation. 

If the audit product had previously been evaluated to E3 then the development/evaluation would proceed as in Option 
1 above. If the developer intended to use an auditing package that was previously evaluated to E2, then the 
developer could: 

- Arrange for the additional evidence required for E3 to be delivered to the evaluators and evaluated 
- Convince the certifier/accreditor to require only E2 for the audit component, thereby allowing the correctness of 

the previous evaluation results to be re-used, and the system to be 'profiled' 
- If possible, avoid stating the audit requirements in the system security target, thereby transforming the audit 

component into a security relevant or irrelevant component. 

However, given the suggested updates to the ITSEC, if the accreditors accepted that the audit component was 
security relevant, then the developer could re-use the audit product at E2 totally legitimately; additional work to 
achieve E3 would not be required. 

WAY FORWARD 

Introduction 

As a result of the previous discussions, this section briefly proposes: 

- How to handle re-use in the interim 

- A longer term approach to resolving the re-use issue. 

Preliminary Approach 

Assurance profiles for systems are required in the short term - accreditors will have to assess the 
threat/countermeasure distribution on the system on a case by case basis. Systems may be given profiled ratings 
such as [[E3, F-B1][E2, F-**]...]. 

Development and evaluation of the overall system should always include effectiveness assessment commensurate 
with the highest target evaluation level specified for a component. 

542 



Products should be targeted at a single evaluation level in order that sensible re-use of their evaluation results can 
be made when they are incorporated into systems (products could be decomposed to a level such that they can be 
targeted at one evaluation level, if necessary). 

Longer Term Approach 

The Architectural and Detailed Design criteria of the ITSEC should be updated to take composition of components 
into account explicitly. In the light of the expanded criteria, and further utilisation of the discussion of composition, 
it may be possible to derive mixing rules to allow an [E3, F-Bl] component to be combined with an [E2, F-**| 
component to produce an overall rating of [E3, F-Bl]. 

Practical research is required, particularly in the area of how threat distribution might be used to enable valid mixing 
rules to be formulated. 

SUMMARY 

Re-use of evaluation results is a hard problem. The above discussion has highlighted a potential way forward that 
requires significant work and input from developers, accreditors, certifiers and evaluators. 

Without resolution of the re-use issue via the provision of clear guidance product developers will find it difficult 
to assess the marketability of their product at a particular target evaluation level. 

REFERENCES 

ITSEC Information Technology Security Evaluation Criteria, Harmonised Criteria of France, Germany, 
the Netherlands, United Kingdom, Version 1.2, June 1991. 

TCSEC Department of Defense Trusted Computer System Evaluation Criteria, DOD 5200.28-STD, 
Department of Defense, December 198S. 

TD1 Trusted Database Management System Interpretation, NCSC, April 1991. 

DEF-STAN Hazard Analysis and Safety Classification of the Computer and Programmable Electronic System 
Elements of Defence Equipment, Ministry of Defence, April 1991. 

Since 198S Admiral has been involved with the Communications - Electronics Security Group (CESG) in the 
development and application of standards and procedures for security evaluation. In 198S the Company commenced 
operation of the lead Evaluation Facility for CESG, and in 1991 the Evaluation Facility was accredited by the 
National Measurement Accreditation Service as a Commercial Licensed Evaluation Facility (CLEF). 

Jonathan Smith is a member of the Admiral CLEF, and has been a contributor to the Information Technology 
Security Evaluation Manual and UK IT Security Evaluation And Certification Scheme Publications. 

543 



RISK MANAGEMENT OF COMPLEX NETWORKS 

by Richard Cox and Dr. Michael O'Neill 
CTA Incorporated, 7150 Campus Drive, Suite 100, Colorado Springs CO 80920-3178 
and Lt Col William Price, HQ AFSPACECOM/LKXS, Peterson AFB CO 80914-5001 

ABSTRACT 

Regarding communications-computer systems security, current Department of Defense (DoD) 
guidance readily applies to standalone systems or simple networks. However, these documents 
do not apply easily to complex evolving networks ~ especially heterogeneous conglomerates 
which have existed for several years and are evolving to meet operational requirements. 

This paper describes a methodology for risk management of complex networks. There are 
three primary tasks: determining a security policy, constructing a security architecture, and 
developing an accreditation strategy. 

INTRODUCTION 

According to DoD policy, all communication-computer systems are subject to "risk 
management," a process to identify, evaluate, and reduce risks and vulnerabilities. The 
ultimate goal of the risk management process is to operate at an acceptable level of risk. This 
results in accreditation (written approval to operate) from a Designated Approving Authority 
(DAA). 

A non-trivial problem for many DAAs is how to apply current DoD guidance in accrediting 
complex evolving networks. Publications such as DoD Directive 5200.28 [1], the "Orange 
Book" [2], and die "Red Book" [3] apply best to systems such as standalone mainframes or 
simple networks; these publications do not directly address complex networks. Combining 
standalone systems into a network invariably results in security issues (such as the cascading 
problem) which are unique to networks. Recognizing this, the National Research Council 
stated, "there is also a need to address broader system security concerns in a manner that 
recognizes the heterogeneity of integrated or conglomerate systems." [4] 

Complex networks generally have the following characteristics: 

There are at least two interconnected networks. In some cases, there are many 
interconnected systems or networks performing critical missions. 

There are many organizations involved in development and acquisition of components, so 
there are multiple DAAs. There are usually two or more network DAAs. 

It is a multilevel network; computers or network nodes process different levels of 
classified information while users have different clearances and need-to-know restrictions. 

The network has evolved over a period of years, and it continues to evolve. Many of the 
systems predate modern computer security features or capabilities, and subsequent evolutions 
have not explicitly followed these security practices. However, total upgrades or replacements 
are neither operationally nor economically feasible. 

The operating command uses and controls the network, and although some components 
may have individual approval to operate, the overall network does not have accreditation. 

There is no overall network security policy. 

544 
Copyright 1992 CTA Incorporated 



For such networks, the risk management process can be extremely complicated and resource 
intensive. This paper proposes a risk management methodology which could be followed to 
accredit any complex network. A key element of the methodology is reducing complexity to a 
level of abstraction (information reduction) which allows meaningful application of current 
DoD guidance while meeting operational requirements. In the cybernetic systems disciplines 
this is often referred to as the "Cones of Resolution," or trying to comprehend the logic of the 
basic elements as well as the relationships among the elements. [5] Recent literature refers to 
this process as "transition engineering methodology" ~ reducing complexity by using data 
reduction and data abstraction as a means to describe and analyze large complex evolving 
systems. [6] 

Although the risk management methodology can be described as three tasks, they are not 
discrete phases, but parallel and interwoven activities. For example, security policy usually 
drives the security architecture; but complex networks which have evolved for years often do 
not have an overall security policy. It might be necessary to "reverse engineer" a security 
solution for the network, so architectural analysis could precede policy determination to assist 
in understanding the complexities of the system. For any complex network, the three tasks 
should evolve and iterate concurrently. Although there are several steps within each task, they 
are identified according to the primary goal of mat task. They are: 

Task I:    Determine a security policy. 

Task II:   Construct a security architecture. 

Task III:  Develop an accreditation strategy. 

PRELIMINARY RESEARCH 

Before Task I of the methodology, do preliminary research to determine basic information 
about the network: 

First, determine network boundaries. Since the goal is to accredit a complex network, 
determine boundaries to clearly discriminate between what is in the network and what is in the 
environment; between what will be and what will not be accredited. Identify "core" systems 
whose primary mission is to process data for the network, and "affiliated systems whose 
primary mission is something other than processing data for the network. 

Second, review network documentation. Having determined the boundaries of the network, 
collect and review all applicable documentation to: 

Identify the overall mission and functions of the network. 

Identify how the network is managed and controlled. 

Identify the networks, sub-networks, and communications-computer system components to 
be accredited as part of the overall network. These include (but are not limited to) data 
sources, communications paths from the data sources, processing entities, and communications 
paths to the users. 

Third, identify the overall network DAA. This is the top-level DAA with authority to grant 
approval to operate for the entire "network of networks." 

545 



TASK I - SECURITY POLICY 

Because most complex networks have evolved for years, they often have significant 
weaknesses by current security standards. Establishing an overall security policy suggests 
solutions to security problems and provides guidelines for future evolution. The security 
policy should accommodate the existing system as much as possible to minimize the cost of 
changing the network. Task I produces a Network Security Policy (NSP) which should 
address at least seven areas: 

(1) Network Security Objectives. Identify primary and secondary security objectives. The 
primary objectives will include confidentiality, integrity, and availability. 

(2) Roles and Responsibilities. Establish specific duties and tasks for all personnel with 
network interfaces. These include (a) DAAs at all levels; (b) MAJCOM and Base Level 
Communications-Computer Security Officers (CSOs), MAJCOM and Base Computer Systems 
Security Managers (MCSSMs and BCSSMs); (c) Network Managers (NMs) and Network 
Security Officers (NSOs); (d) Computer Systems Managers (CSMs) and Computer Systems 
Security Officers (CSSOs); (e) Functional Area Managers (FAMs) and Terminal Area Security 
Officers (TASOs); (0 systems analysts, programmers, and software support personnel; (g) 
system administrators; and (h) computer/network users. 

(3) Life Cycle Management. Identify life cycle phases for network additions, deletions, and 
m. difications, and especially for new systems being developed to interface with the network. 
Explain how DAAs will accredit and reaccredit systems throughout their life cycle. 
Emphasize the need to continually monitor the network to ensure security measures remain 
effective after system changes. 

(4) Network Security Measures. Specify policies and procedures regarding: 

Physical security, which involves protection and survivability for personnel and 
equipment; protection against intentional human threats such as theft, sabotage, and espionage; 
and environmental security. 

Procedural security, which protects against unintentional human threats such as inadvertent 
blunders, improper maintenance, etc. 

Personnel security, involving clearance (including access to categories or compartments) 
and need to know. 

Information security (INFOSEQ, which includes procedures for handling classified and 
sensitive unclassified information; magnetic remanence; fraud, waste, and abuse, etc. 

Communication security (COMSEC) to protect secure and sensitive communications. 

Emanations security (TEMPEST) to prevent exploitation of electronic signal radiations. 

Operations security (OPSEC) to identify, control, and protect evidence of the planning 
and execution of sensitive activities. 

546 



Trusted systems security, which includes trusted computing base (TCB) classes, modes of 
operation, identification and authentication, discretionary and mandatory access control, object 
reuse, audit trails, labels, trusted paths, and documentation requirements. 

Hardware security, which involves nonvolatile storage media, peripheral security, 
maintenance activities, periods processing, and firmware. 

Software security, which involves evaluated and non-evaluated products; user-developed 
software; public domain software, freeware, and shareware; software development, testing, 
and debugging; security software; job control language; configuration management; trusted 
software, data base management systems (DBMS); maintenance activities; and malicious logic. 

Integrity measures such as device identification, message management, protocols, and 
integrity checks. 

Other security considerations such as interface policies and resource allocation policies. 

(5) Contingency and Emergency Plans. Establish criteria for developing and testing 
contingency and emergency plans, especially policies for making and storing backups. 

(6) Education, Training, and Awareness.   Identify policies and procedures for all aspects of 
security training, including initial and recurring training for all personnel, specialized training 
requirements for personnel in key security positions, and minimum standards for NSO 
developed training. 

(7) Incident and Vulnerability Reporting. Establish policies and procedures for identifying 
and reporting incidents and vulnerabilities 

Policy development must focus on specifically tailoring DoD guidance to the network. The 
Orange Book uses abstract terms such as subjects, objects, groups of subjects, need-to-know, 
security labels, discretionary access controls, and mandatory access controls. The policy 
should describe what these abstract terms mean in the context of the network. Key decisions 
might be whether network nodes are subjects, or whether users or processes residing on the 
nodes are processes. The former view allows the policy to operate at a higher, more abstract 
level, while the latter leads to a more complex policy. If the former view were feasible, the 
developer of a particular node would refine the policy for the particular node. The refined 
policy would have to address the users and processes operating on the node. 

The policy should address specific issues such as the range of security labels which the 
network must accommodate; specific objects having security labels; how security labels are 
determined for objects; the various users, communities, groups of users, and actions which are 
subject to discretionary or mandatory access controls. 

TASK II - ARCHITECTURE 

Task II has three steps: construct the general architecture, construct the security architecture (a 
subset of the general architecture), and identify security architecture issues. The primary goal 
of this task is constructing the security architecture. 

Step 1: Construct the general architecture. From high-level perspectives, it is possible to 
construct many different general models of the network. The methodology suggests 
constructing general architectures (including simple models or diagrams) from at least two 
points of view: 

547 



Mission architecture. Divide the primary mission into mission components, then 
determine which centers and information processing centers support each component. Finally, 
determine which elements of the network support the centers to accomplish their missions. 
(Some elements may support more than one mission.) If the network has a command and 
control structure, identify the flow of mission command and control from the highest agencies 
controlling the network to the lowest agencies contributing to the network. 

Communications-computer system architecture. Identify data flow from individual 
sources, through various communications channels, to processing entities such as correlation 
centers, through other communications channels, to the network users. 

Step 2: Construct the security architecture. While general architectures can be done at a high 
level, the security architecture must be very detailed. It must identify general security facts, 
assess the network's ability to meet primary security objectives, and describe protection 
mechanisms used by the network. 

First, identify general security facts about the entire network: 

Highest and lowest classifications processed (including categories and compartments), or 
types of sensitive unclassified being processed. 

Minimum and maximum user clearances and restrictions (i.e., user limitations based on 
clearance, access to categories and compartments, or need to know). 

All security modes of operation (dedicated, system high, partitioned, or multilevel) used 
throughout the network. 

All TCB classes (ranging from class D to class Al) used throughout the network. 

Second, assess how the network achieves these three security objectives: 

How does the network protect classified or sensitive unclassified data from unauthorized 
disclosure (confidentiality)? 

How does the network ensure system integrity (the ability to function unimpaired, free 
from deliberate or inadvertent unauthorized manipulation) and data integrity (i.e., data 
correctly represents information, and authorized users and network processors handle and 
manipulate the data properly)? 

How does the network provide both assurance of service (for authorized users) and denial 
of service (to unauthorized users)? 

Third, specifically identify and describe mechanisms which protect against common threats and 
vulnerabilities to the network. Be sure to cover all the disciplines mentioned in the NSP, 
including physical security, procedural security, personnel security, INFOSEC, COMSEC, 
TEMPEST, OPSEC, trusted systems security, hardware and software security, integrity 
mechanisms, and other security measures. 

Step 3: Identify and document security architecture issues uncovered during network 
investigation and analysis. Make recommendations to resolve these issues. 

548 



TASK TIT - ACCREDITATION STRATEGY 

Core systems (whose primary mission is to process data for the network), follow a particular 
process to obtain "approval to operate," while affiliated systems (whose primary mission is 
something other than processing data for the network), follow different procedures to obtain 
"approval to connect." 

For core systems, Task III has four steps: establish a security management structure, develop 
risk analysis and certification procedures for security personnel, establish standard procedures 
for component DAAs to grant approval to operate (for core systems) or approval to connect 
(for affiliated systems), and establish a mechanism for the overall network DAA to accredit the 
entire network. 

To illustrate this process, Figure 1 shows a relatively simple "network of networks." For 
simplicity, there are only nine Central Processing Units (CPUs) grouped into three networks, 
plus the overall "network of networks." Because the CPUs are assumed to be geographically 
separated, there are nine DAAs for the nine CPUs, three DAAs for the three networks, and 
one network DAA for the "network of networks" - a total of 13 DAAs in this simple 
example. 

OVERALL NETWORK DAA 

"NETWORK OF NETWORKS" 

Network-1 DAA 

Network «1 

DAA 

CPU#1 

DAA DAA 

CPU #2 CPU #3 

m twork-2 DAA Network-3 DAA 

Network «2 

DAA 

Network #3 

DAA 

CPU #4 
1  

CPU #7 

DAA DAA DAA DAA 

CPU #5 CPU #6 CPU #8 CPU #9 

Figure 1. A Simple "Network of Networks" 

549 



Step 1: Establish a security management structure to implement and enforce the NSP. Begin 
by appointing the overall network DAA, then (throughout the entire network) ensure the 
appointment of component DAAs, network managers (NMs), computer system managers 
(CSMs), network security officers (NSOs), and computer system security officers (CSSOs). 
Finally, establish security working groups to represent the various interests and organizations 
within the network. These groups are forums to identify and resolve security relevant issues. 

Because there are multiple DAAs, approval is an iterative process, repeated at least once by 
each of the component DAAs under the overall network DAA. Figure 2 shows a "pyramid" 
of DAAs with the overall network DAA at the top and four levels of component DAAs 
underneath. 

Approval starts at the bottom, when "Level 4" DAAs approve their systems and forward 
paperwork to their "Level 3" DAAs. Then the "Level 3" DAAs approve their systems and 
forward paperwork to their "Level 2" DAAs. The process continues until the "Overall 
Network DAA" receives paperwork from the "Level 1" DAAs and accredits the entire 
network. This iterative process means that steps 2 and 3 (risk analysis and certification, and 
DAA approval) are repeated many times. 

Figure 2. A "Pyramid" of DAAs 

550 



Step 2: Establish standard risk management procedures for security personnel to perform a 
risk analysis and provide certification to the DA A, 

The risk analysis includes: 

The security environment assessment, which includes a criticality assessment to determine 
the relative importance of confidentiality, integrity, and availability; determining basic security 
facts such as data sensitivity and user clearances and restrictions; the required mode of 
operation; and the required TCB class. 

The risk assessment to analyze threats, vulnerabilities, and existing countermeasures to 
estimate the probabilities of threats exploiting vulnerabilities. The goal of risk assessment is to 
determine residual risks. 

The Security Test and Evaluation (ST&E), to verify that countermeasures are working 
properly to reduce threats and vulnerabilities to an acceptable level of risk. 

The countermeasure assessment to determine what additional countermeasures should be 
used (or, perhaps, are already planned to be used) to further minimize risks, and to determine 
the technical and economic feasibility of implementing the additional countermeasures. 

Certification documentation includes all the written results of the risk analysis with a cover 
letter to the DAA requesting approval to operate. Some attachments (such as the TEMPEST 
countermeasure assessment) may be classified. This documentation: 

Certifies the ability of the system to meet the requirements of the Network Security 
Policy. 

Summarizes the result of the security environment assessment, including the criticality 
assessment, basic security facts, the security mode of operation, and the required TCB class. 

Identifies and quantifies residual risks which the DAA must accept before accrediting the 
system. 

Makes recommendations regarding the technical and economic feasibility of additional 
countermeasures which should be used (or are planned to be used) to further minimize risks to 
the system. 

Requests interim or final approval to operate. 

Step 3: Establish procedures for component DAAs to grant approval to operate for their part 
of the network (or approval to connect for their affiliated systems), and provide certification to 
the next higher DAA. 

Using Figure 1 as an example, key security personnel for each of the nine CPUs perform a 
risk analysis and provide certification to the nine DAAs. After each DAA accredits their 
individual systems, they provide certification to their respective network DAAs. 

For each of the three networks, key security personnel examine the certification documentation 
provided by the DAAs for the standalone systems. A key security concern at this point must 
be the "cascading problem," which can result in serious security compromises. If cascading is 
a problem, they must consider countermeasures such as upgrading systems to a higher class, 
using guard processors, end-to-end encryption, etc. These key personnel perform a network 
risk analysis and provide certification to their respective network DAAs. 

551 



Each of the three network DAAs accredit their individual networks and provide certification to 
the overall network DAA. Security personnel who work for the overall network DAA 
examine the certification documentation provided by the three network DAAs. Then they 
perform a risk analysis for the entire "network of networks" and provide certification to the 
overall network DAA. 

Obviously, this example based on Figure 1 is very simple; real-world networks are 
considerably more complex, and the process could involve many levels of iteration. 

Step 4 achieves the final goal: the overall network DAA accredits the entire "network of 
networks," granting interim or final approval to operate. The approval documentation must 
specify what time period or what events will require reaccreditation of the entire network. 

SUMMARY 

Risk management of complex networks is difficult and resource intensive, but not an 
impossible task. 

During preliminary research, determine network boundaries, review existing 
documentation, and identify the overall network DAA. 

Publish a Network Security Policy (NSP) which covers the full spectrum of 
communications-computer system security disciplines and requirements. 

Construct a detailed security architecture which describes the mechanisms used to protect 
against threats and vulnerabilities. Identify security issues uncovered during this task. 

Develop an accreditation strategy for the network. Establish a security management 
structure to implement and enforce the NSP. Set up an iterative process for security personnel 
to perform risk analysis and provide certification documentation to the DAA. This process 
begins at the lowest levels of the security management structure and gradually encompasses 
more and more systems as successive DAAs accredit their portion of the network. Ultimately, 
the overall network DAA accredits the entire network. 

REFERENCES 

[1] DoD Directive 5200.28, Security Requirements for Automated Information Systems 
(AIS), 21 Mar 88. 

[2] DoD 5200.28-STD, Department of Defense Trusted Computer System Evaluation Criteria 
("Orange Book"), Dec 85. 

[3] NCSC-TG-005, Trusted Network Interpretation of the Trusted Computer System 
Evaluation Criteria ("Red Book"), 31 Jul 87. 

[4] The National Research Council: Computers at Risk, 1991, page 140. 

[5] Beer, Stafford, Management Science: The Business Use of Operations Research, 1968; 
Schoderbek, Peter et al., Management Systems: Conceptual Considerations, 1975. 

[6] Salasin, John and Chilli, Frank, "Transition Engineering Methodology", IEEE 
Proceedings, 1990, page 110. 

552 



ACRONYMS 

AIS Automated Information System 

BCSSM Base Computer Systems Security Manager 

COMSEC Communications Security 
CPU Central Processing Unit 
CSM Computer Systems Manager 
CSO Communications-Computer Security Officer 
CSSO Computer Systems Security Officer 

DAA Designated Approving Authority 
DBMS Data Base Management System 
DoD Department of Defense 

FAM Functional Area Manager 

IEEE Institute of Electrical and Electronics Engineers 
INFOSEC Information Security 

MAJCOM Major Command 
MCSSM MAJCOM Computer Systems Security Manager 

NCSC National Computer Security Center 
NM Network Manager 
NSO Network Security Officer 
NSP Network Security Policy 

OPSEC Operations Security 

ST&E Security Test and Evaluation 

TASO Terminal Area Security Officer 
TCB Trusted Computing Base 
TEMPEST Emanations Security 

553 



Role-Based Access Controls 

David Ferraiolo and Richard Kunn 

National Institute of Standards and Technology 
Technology Administration 

U.S. Department of Commerce 
Gaithersburg, Md. 20899 USA 

ABSTRACT 

While Mandatory Access Controls (MAC) are appropriate for multi- 
level secure military applications, Discretionary Access Controls (DAC) 
are often perceived as meeting the security processing needs of industry 
and civilian government. This paper argues that reliance on DAC as the 
principal method of access control is unfounded and inappropriate for 
many commercial and civilian government organizations. The paper 
describes a type of non-discretionary access control - role-based access 
control (RBAC) - that is more central to the secure processing needs of 
non-military systems then DAC. 

Keywords:   access control, computer security, discretionary access control, integrity, 
mandatory access control, role, TCSEC 

1. Introduction 

The U.S. government has been involved in developing security technology for com- 
puter and communications systems for some time. Although advances have been great, it 
is generally perceived that the current state of security technology has, to some extent 
failed to address the needs of all. [1] , [2] This is especially true of organizations outside 
the Department of Defense (DoD).   [3] 

The current set of security criteria, criteria interpretations, and guidelines has grown 
out of research and development efforts on the part of the DoD over a period of twenty 
plus years. Today the best known U.S. computer security standard is the Trusted Com- 
puter System Evaluation Criteria (TCSEC |4] ). It contains security features and 
assurances, exclusively derived, engineered and rationalized based on DoD security pol- 
icy, created to meet one major security objective — preventing the unauthorized observa- 
tion of classified information. The result is a collection of security products that do not 
fully address security issues as they pertain to unclassified sensitive processing environ- 
ments. Although existing security mechanisms have been partially successful in promot- 
ing security solutions outside of the DoD [2] , in many instances these controls are less 
then perfect, and are used in lieu of a more appropriate set of controls. 

The TCSEC specifies two types of access controls: Discretionary Access Controls 
(DAC) and Mandatory Access Controls (MAC).   Since the TCSEC's appearance in 

554 



December of 1983, DAC requirements have been perceived as being technically correct 
for commercial and civilian government security needs, as well as for single-level mili- 
tary systems. MAC is used for multi-level secure military systems, but its use in other 
applications is rare. The premise of this paper is that there exists a third type of access 
control, referred to as Role-Based Access Control (RBAC), that can be more appropriate 
and central to the secure processing needs within industry and civilian government than 
that of DAC, although the need for DAC will continue to exist. 

2. Aspects of Security Policies 
Recently, considerable attention has been paid to researching and addressing the 

security needs of commercial and civilian government organizations. It is apparent that 
significant and broad sweeping security requirements exist outside the Department of 
Defense. [2] , [5] , [6] Civilian government and corporations also rely heavily on infor- 
mation processing systems to meet their individual operational, financial, and informa- 
tion technology requirements. The integrity, availability, and confidentiality of key 
software systems, databases, and data networks are major concerns throughout all sec- 
tors. The corruption, unauthorized disclosure, or theft of corporate resources could dis- 
rupt an organization's operations and have immediate, serious financial, legal, human 
safety, personal privacy and public confidence impact. 

Like DoD agencies, civilian government and commercial firms are very much con- 
cerned with protecting the confidentiality of information. This includes the protection of 
personnel data, marketing plans, product announcements, formulas, manufacturing and 
development techniques. But many of these organizations have even greater concern for 
integrity. [1] 

Within industry and civilian government, integrity deals with broader issues of 
security than confidentiality. Integrity is particularly relevant to such applications as 
funds transfer, clinical medicine, environmental research, air traffic control, and avionics. 
The importance of integrity concerns in defense systems has also been studied in recent 
years. 171 , [8] 

A wide gamut of security policies and needs exist within civilian government and 
private organizations. An organizational meaning of security cannot be presupposed. 
Each organization has unique security requirements, many of which are difficult to meet 
using traditional MAC and DAC controls. 

As defined in the TCSEC and commonly implemented, DAC is an access control 
mechanism that permits system users to allow or disallow other users access to objects 
under their control: 

A means of restricting access to objects based on the identity of subjects and/or 
groups to which they belong. The controls are discretionary in the sense that a 
subject with a certain access permission is capable of passing that permission 
(perhaps indirectly) on to any other subject (unless restrained by mandatory 
access control). [4] 

DAC, as the name implies, permits the granting and revoking of access privileges to be 
left to the discretion of the individual users. A DAC mechanism allows users to grant or 
revoke access to any of the objects under their control without the intercession of a sys- 
tem administrator. 

555 



In many organizations, the end users do not "own" the information for which they 
are allowed access. For these organizations, the corporation or agency is the actual 
"owner" of system objects as well as the programs that process it. Control is often based 
on employee functions rather than data ownership. 

Access control decisions are often determined by the roles individual users take on 
as part of an organization. This includes the specification of duties, responsibilities, and 
qualifications. For example, the roles an individual associated with a hospital can 
assume include doctor, nurse, clinician, and pharmacist. Roles in a bank include teller, 
loan officer, and accountant. Roles can also apply to military systems; for example, tar- 
get analyst, situation analyst, and traffic analyst are common roles in tactical systems. A 
role based access control (RBAC) policy bases access control decisions on the functions 
a user is allowed to perform within an organization. The users cannot pass access per- 
missions on to other users at their discretion. This is a fundamental difference between 
RBAC and DAC. 

Security objectives often support a higher level organizational policy, such as main- 
taining and enforcing the ethics associated with a judge's chambers, or the laws and 
respect for privacy associated with the diagnosis of ailments, treatment of disease, and 
the administering of medicine with a hospital. To support such policies, a capability to 
centrally control and maintain access rights is required. The security administrator is 
responsible for enforcing policy and represents the organization. 

The determination of membership and the allocation of transactions to a role is not 
so much in accordance with discretionary decisions on the part of a system administrator, 
but rather in compliance with organization-specific protection guidelines. These policies 
are derived from existing laws, ethics, regulations, or generally accepted practices. 
These policies are non-discretionary in the sense that they are unavoidably imposed on 
all users. For example, a doctor can be provided with the transaction to prescribe medi- 
cine, but does not possess the authority to pass that transaction on to a nurse. 

RBAC is in fact a form of mandatory access control, but it is not based on multi- 
level security requirements. As defined in the TCSEC, MAC is 

A means of restricting access to objects based on the sensitivity (as represented 
by a label) of the information contained in the objects and the formal authori- 
zation (i.e. clearance) of subjects to access information of such sensitivity. [4] 

Role based access control, in many applications (e.g. [9] , [10] , [11]) is concerned more 
with access to functions and information than strictly with access to information. 

The act of granting membership and specifying transactions for a role is loosely 
analogous to the process of clearing users (granting membership) and the labeling (asso- 
ciate operational sensitivities) of objects within the DoD. The military policy is with 
respect to one type of capability: who can read what information. For these systems the 
unauthorized flow of information from a high level to a low level is the principal con- 
cern. As such, constraints on both reads and writes are in support of that rule. Within a 
role-based system, the principal concern is protecting the integrity of information: "who 
can perform what acts on what information." 

A role can be thought of as a set of transactions that a user or set of users can per- 
form within the context of an organization. Transactions are allocated to roles by a sys- 
tem administrator. Such transactions include the ability for a doctor to enter a diagnosis, 

556 



prescribe medication, and add a entry to (not simply modify) a record of treatments per- 
formed on a patient. The role of a pharmacist includes the transactions to dispense but 
not prescribe prescription drugs. Membership in a role is also granted and revoked by a 
system administrator. 

Roles are group oriented. For each role, a set of transactions allocated the role is 
maintained. A transaction can be thought of as a transformation procedure [1] (a pro- 
gram or portion of a program) plus a set of associated data items. In addition, each role 
has an associated set of individual members. As a result, RBACs provide a means of 
naming and describing many-to-many relationships between individuals and rights. Fig- 
ure 1 depicts the relationships between individual users, roles/groups, transformation pro- 
cedures, and system objects. 

The term transaction is used in this paper as a convenience to refer to a binding of 
transformation procedure and data storage access. This is not unlike conventional usage 
of the term in commercial systems. For example, a savings deposit transaction is a pro- 
cedure that updates a savings database and transaction file. A transaction may also be 
quite general, e.g. "read savings file". Note however, that "read" is not a transaction in 
the sense used here, because the read is not bound to a particular data item, as "read sav- 
ings file" is. 

The importance of control over transactions, as opposed to simple read and write 
access, can be seen by considering typical banking transactions. Tellers may execute a 
savings deposit transaction, requiring read and write access to specific fields within a sav- 
ings file and a transaction log file. An accounting supervisor may be able to execute 
correction transactions, requiring exactiy the same read and write access to the same files 
as the teller. The difference is the process executed and the values written to the transac- 
tion log file. 

Objectl 

tra\s_a 
  

xswrfioer of 

I    Role! \+                       ' 
/^   memoer_of 

trcrns_b me*Qber_of 

0bject2 

.User4 

User5 

lser6 

Figure I - Role relationships 

The applicability of RBAC to commercial systems is apparent from its widespread 
use.  Baldwin [9] describes a database system using roles to control access.  Nash and 

557 



Poland [10] discuss the application of role based access control to cryptographic authen- 
tication devices commonly used in the banking industry. Working with industry groups, 
the National Institute of Standards and Technology has developed a proposed standard, 
"Security Requirements for Cryptographic Modules," (Federal Information Processing 
Standard 140-1) [11] that will require support for access control and administration 
through roles. To date, these role based systems have been developed by a variety of 
organizations, with no commonly agreed upon definition or recognition in formal stan- 
dards. Role based access controls described in this paper address security primarily for 
application-level systems, as opposed to general purpose operating systems. 

3. Formal Description of RBAC 

To clarify the notions presented in the previous section, we give a simple formal 
description, in terms of sets and relations, of role based access control. No particular 
implementation mechanism is implied. 

For each subject, the active role is the one that the subject is currently using: 

AR(s-.subject) = {the active role for subject s). 

Each subject may be authorized to perform one or more roles: 

RA(s-.subject) = {authorized roles for subject s }. 

Each role may be authorized to perform one or more transactions: 

TA({r-.role}) = {transactions authorized for role r }. 

Subjects may execute transactions. The predicate exec(s,t) is true if subject s can exe- 
cute transaction / at the current time, otherwise it is false: 

exec (s-.subject, t-.tran) = true iff subject s can execute transaction /. 

Three basic rules are required: 

(1) Role assignment:   A subject can execute a transaction only if the subject has 
selected or been assigned a role: 

\fs-.subject,t:tran(exec(s ,t) => AR(s) * 0 ). 

The identification and authentication process (e.g. login) is not considered a transaction. 
All other user activities on the system are conducted through transactions. Thus all 
active users are required to have some active role. 

(2) Role authorization: A subject's active role must be authorized for the subject: 

\fs .subject {AR (s) c RA (s)). 

With (1) above, this rule ensures that users can take on only roles for which they are 
authorized. 

(3) Transaction authorization:  A subject can execute a transaction only if the transac- 
tion is authorized for the subject's active role: 

\fs-.subject, t :tran(exec (s,i) => i e TA (AR(s))). 

With (1) and (2), this rule ensures that users can execute only transactions for which they 
are authorized. Note that, because the conditional is "only if", this rule allows the possi- 
bility that additional restrictions may be placed on transaction execution. That is, the rule 
does not guarantee a transaction to be executable just because it is in TA(AR(s)), the set of 

558 



transactions potentially executable by the subject's active role. For example, a trainee for 
a supervisory role may be assigned the role of "Supervisor", but have restrictions applied 
to his or her user role that limit accessible transactions to a subset of those normally 
allowed for the Supervisor role. 

In the preceding discussion, a transaction has been defined as a transformation pro- 
cedure, plus a set of data items accessed by the transformation procedure. Access control 
in the rules above does not require any checks on the user's right to access a data object, 
or on the transformation procedure's right to access a data item, since the data accesses 
are built into the transaction. Security issues are addressed by binding operations and 
data into a transaction at design time, such as when privacy issues are addressed in an 
insurance query transaction. 

It is also possible to redefine the meaning of "transaction" in the above rules to refer 
only to the transformation procedure, without including a binding to objects. This would 
require a fourth rule to enforce control over the modes in which users can access objects 
through transaction programs. For example, a fourth rule such as 

(4)    \fs.subject, t\iran ,o.object(exec(s,t) =3 access(AR(s),t,o,x)) 

could be defined using a transaction (redefined to transformation procedure) to object 
access function access(r, /, o,x) which indicates if it is permissible for a subject in role r 
to access object o in mode x using transaction t, where x is taken from some set of modes 
such as read, write, append. Note that the Clark-Wilson access control triple could be 
implemented by letting the modes x be the access modes required by transaction t, and 
having a one-to-one relationship between subjects and roles. RBAC, as presented in this 
paper, thus includes Clark and Wilson access control as a special case. 

Use of this fourth rule might be appropriate, for example, in a hospital setting. A 
doctor could be provided with read/write access to a prescription file, while the hospital 
pharmacist might have only read access. (Recall that use of the first three rules alone 
requires binding the transaction program t and data objects that t can access, and only 
controls access to the transactions.) This alternative approach using the fourth rule might 
be helpful in enforcing confidentiality requirements. 

Another use of RBAC is to support integrity. Integrity has been defined in a variety 
of ways, but one aspect [8] of integrity is a requirement that data and processes be 
modified only in authorized ways by authorized users. This seems to be a reasonable 
security objective for many real systems, and RBAC should be applicable to such sys- 
tems. 

In general, the problem of determining whether data have been modified only in 
authorized ways can be as complex as the transaction that did the modification For this 
reason, the practical approach is for transactions to be certified and trusted. If transac- 
tions must be trusted then access control can be incorporated directly into each transac- 
tion. Requiring the system to control access of transaction programs to objects through 
the access function used in rule (4) might then be a useful form of redundancy, but it 
could involve significant overhead for a limited benefit in enforcing integrity require- 
ments. Therefore, inclusion of a transaction to object access control function in RBAC 
would be useful in some, but not all applications. 

559 



4. Centrally Administering Security Using RBAC 

RBAC is flexible in that it can take on organizational characteristics in terms of pol- 
icy and structure. One of RBAC's greatest virtues is the administrative capabilities it 
supports. 

Once the transactions of a Role are established within a system, these transactions 
tend to remain relatively constant or change slowly over time. The administrative task 
consists of granting and revoking membership to the set of specified named roles within 
the system. When a new person enters the organization, the administrator simply grants 
membership to an existing role. When a person's function changes within the organiza- 
tion, the user membership to his existing roles can be easily deleted and new ones 
granted. Finally, when a person leaves the organization, all memberships to all Roles are 
deleted. For an organization that experiences a large turnover of personnel, a role-based 
security policy is the only logical choice. 

In addition, roles can be composed of roles. For example, a Healer within a hospital 
can be composed of the roles Healer, Intern, and Doctor. Figure 2 depicts an example of 
such a relationship. 

By granting membership to the Role Doctor, it implies access to all transactions 
defined by Intern and Healer, as well as those of a Doctor. On the other hand, by grant- 
ing membership to the Intern role, this implies transactions of the Intern and Healer not 
the Doctor. However, by granting membership to the Healer role, this only allows access 
to those resources allowed under the role Healer. 

5. Principle of Least Privilege 

The principle of least privilege has been described as important for meeting 
integrity objectives. [8] The principle of least privilege requires that a user be given no 
more privilege than necessary to perform a job. Ensuring least privilege requires identi- 
fying what the user's job is, determining the minimum set of privileges required to per- 
form that job, and restricting the user to a domain with those privileges and nothing 
more. By denying to subjects transactions that are not necessary for the performance of 
their duties, those denied privileges cannot be used to circumvent the organizational 
security policy. Although the concept of least privilege currently exists within the con- 
text of the TCSEC, requirements restrict those privileges of the system administrator. 
Through the use of RBAC, enforced minimum privileges for general system users can be 
easily achieved. 

6. Separation of Duties 

RBAC mechanisms can be used by a system administrator in enforcing a policy of 
separation of duties. Separation of duties is considered valuable in deterring fraud since 
fraud can occur if an opportunity exists for collaboration between various job related 
capabilities. Separation of duty requires that for particular sets of transactions, no single 
individual be allowed to execute all transactions within the set. The most commonly 
used examples are the separate transactions needed to initiate a payment and to authorize 
a payment. No single individual should be capable of executing both transactions. 
Separation of duty is an important consideration in real systems. [1] ,112] , [13J , [14J 
The sets in question will vary depending on the application.   In real situations, only 

560 



User I 

User2 

ser3 

User4 

User5 

ser6 

User7 

User8 

User9 

Figure 2 - Multi-Role relationships 

certain transactions need to be restricted under separation of duty requirements. For 
example, we would expect a transaction for "authorize payment" to be restricted, but a 
transaction "submit suggestion to administrator" would not be. 

Separation of duty can be either static or dynamic. Compliance with static separa- 
tion requirements can be determined simply by the assignment of individuals to roles and 
allocation of transactions to roles. The more difficult case is dynamic separation of duty, 

561 



where compliance with requirements can only be determined during system operation. 
The objective behind dynamic separation of duty is to allow more flexibility in opera- 
tions. Consider the case of initiating and authorizing payments. A static policy could 
require that no individual who can serve as payment initiator could also serve as payment 
authorizor. This could be implemented by ensuring that no one who can perform the ini- 
tiator role could also perform the authorizer role. Such a policy may be too rigid for 
commercial use, making the cost of security greater than the loss that might be expected 
without the security. More flexibility could be allowed by a dynamic policy that allows 
the same individual to take on both initiator and authorizer roles, with the exception that 
no one could authorize payments that he or she had initiated. The static policy could be 
implemented by checking only roles of users; for the dynamic case, the system must use 
both role and user ID in checking access to transactions. 

Separation of duty is necessarily determined by conditions external to the computer 
system. The Clark-Wilson [1] scheme includes the requirement that the system maintain 
the separation of duty requirement expressed in the access control triples. Enforcement 
is on a per-user basis, using the user ID from the access control triple. As discussed 
above, user functions can be conveniently separated by role, since many users in an 
organization typically perform the same function and have the same access rights on TPs 
and data. Allocating access rights according to role is also helpful in defining separation 
of duty in a way that can be enforced by the system. 

7. Summary and Conclusions 

In many organizations in industry and civilian government, the end users do not 
"own" the information for which they are allowed access. For these organizations, the 
corporation or agency is the actual "owner" of system objects, and discretionary access 
control may not be appropriate. Role-Based Access Control (RBAC) is a non- 
discretionary access control mechanism which allows and promotes the central adminis- 
tration of an organizational specific security policy. 

Access control decisions are often based on the roles individual users take on as part 
of an organization. A role specifies a set of transactions that a user or set of users can 
perform within the context of an organization. RBAC provide a means of naming and 
describing relationships between individuals and rights, providing a method of meeting 
the secure processing needs of many commercial and civilian government organizations. 

Various forms of role based access control have been described and some are used 
in commercial systems today, but there is no commonly accepted definition or formal 
standards encompassing RBAC. As such, evaluation and testing programs for these sys- 
tems have not been established as they have for systems conforming to the Trusted Com- 
puter Security Evaluation Criteria. This paper proposed a definition of The requirements 
and access control rules for RBAC proposed in this paper could be used as the basis for a 
common definition of access controls based on user roles. 

References 

1. D.D. Clark and D.R. Wilson, "A Comparison of Commercial and Military Com- 
puter Security Policies," IEEE Symposium on Computer Security and Privacy, 
April, 1987. 

562 



2. National Research Council, Computers at Risk, National Academy Press, 1991. 

3. National Institute of Standards and Technology, Minimum Security Functionality 
Requirements for Multi-User Operating Systems (draft), Computer Systems Labora- 
tory, NIST, January 27, 1992. 

4. Department of Defense, Trusted Computer Security Evaluation Criteria, DOD 
5200.28-STD, 1985. 

5. Z.G. Ruthberg and W.T. Polk, Editors, Report of the Invitational Workshop on 
Data Integrity, Natl. Inst. of Stds. and Technology, SP 500-168, 1989. 

6. S.W. Katzke and Z.G. Ruthberg, Editors, Report of the Invitational Workshop on 
Integrity Policy in Computer Information Systems, Natl. Inst. of Stds. and Technol- 
ogy, SP 500-160, 1987. 

7. J.E. Roskos, S.R. Welke, J.M. Boone, and T. Mayfield, Integrity in Tactical and 
Embedded Systems, Institute for Defense Analyses, HQ 89-034883/1, October, 
1989. 

8. National Computer Security Center, Integrity in Automated Information Systems , 
September, 1991. 

9. R.W. Baldwin, "Naming and Grouping Privileges to Simplify Security Management 
in Large Databases," IEEE Symposium on Computer Security and Privacy, 1990. 

10. M.J. Nash and K.R. Poland, "Some Conundrums Concerning Separation of Duty," 
IEEE Symposium on Computer Security and Privacy, 1990. 

11. National Institute of Standards and Technology, Security Requirements for Crypto- 
graphic Modules, Natl. Inst. of Stds. and Technology, FIPS 140-1, 1992. 

12. W.R. Shockley, "Implementing the Clark/Wilson Integrity Policy Using Current 
Technology," Proceedings of 11th National Computer Security Conference, 
October, 1988. 

13. R. Sandhu, "Transaction Control Expressions for Separation of Duties," Fourth 
Aerospace Computer Security Applications Conference, December, 1988. 

14. P. Terry and S. Wiseman, "A 'New' Security Policy Model," IEEE Symposium on 
Computer Security and Privacy, May, 1989. 

563 



AN SDNS PLATFORM FOR TRUSTED PRODUCTS 

Ernie Borgoyne 
Motorola Inc., Government Electronics Group 
8201 E. McDowell Road, Mail Stop H2250 

Scottsdale, Arizona 85252 

Ralph G. Puga 
Trusted Information Systems, Inc. 

3060 Washington Road (Rt. 97) 
Glenwood, Maryland 21738 

ABSTRACT 

The Network Encryption System (NES) security platform is designed with an open architecture 
that allows commercially available trusted products to be easily integrated with Secure Data 
Network System (SDNS) technology. SDNS is the U.S. government's new mainstream secure 
networking technology that offers significant cost benefits to users because of its scalability and 
interoperability of services. This paper presents a brief overview of the Secure Data Network 
System and a description of the SDNS based Network Encryption System. It then discusses the 
work that is being done in developing a trusted SDNS interface for the NES by integrating 
Trusted Xenix• onto the NES security platform. 

INTRODUCTION 

The NES was evaluated by the National Security Agency (NSA) under the Commercial 
COMSEC Endorsement Program (CCEP). The NES is the first product designed to SDNS 
standards, endorsed by NSA, and available today. The open architecture design of the NES 
security platform provides the ability to integrate standard commercially available networking and 
security technology, including network media interface boards, network routing and management 
software, and COMPUSEC evaluated trusted computer products. The benefit of the NES open 
COMSEC architecture, is that it provides an SDNS platform that can be used as a foundation for 
a variety of new INFOSEC applications and products. Figure 1 illustrates the essence of this 
commercial technology utilization by the NES security platform. 

INSECURITY SECURE 
PRODUCTS GATBWfcS 

Figure 1 INFOSEC PRODUCT Platform 

564 



This paper will first present an overview of SDNS for the benefit of those who are not familiar 
with this new technology. The NES will then be presented including a description of the NES 
security platform's basic open architecture, which will allow the reader to understand how the 
new SDNS technology can be easily utilized. A new configuration will then be presented called 
the INFOSEC Computer Platform. The INFOSEC Computer Platform incorporates an 
embedded 386-based processor board within the NES security platform, running Trusted 
Xenix• and a trusted interface to the SDNS functions. This interface will allow user application 
software together with a B2+ level secure operating system to be integrated within the same 
physical environment. As the product evolves, this SDNS interface can be extended to allow 
secure end-to-end communications via standard networks through the use of networking 
applications. This paper will conclude by presenting some potential applications for this 
proposed INFOSEC platform. 

SECURE DATA NETWORK SYSTEM 

SDNS is a set of standards for interoperability of data security devices over public and private 
data networks. The SDNS standards were developed by a U.S. government and industry 
consortium, and sponsored by the National Security Agency. Established in 1986, the 
consortium has produced a set of security protocol specifications for the application of security 
functions at various layers in the network communication stack. The SDNS protocols are based 
on the International Standards Organization (ISO) - Open Systems Interconnection (OSI) 
reference model, and provide security services designed to protect both government Classified 
(Type I) and government Unclassified-Sensitive (Type II) information while being transmitted 
over Unclassified networks. 

The heart of the SDNS operation is the NSA's Electronic Key Management System (EKMS), 
and is illustrated in Figure 2. The EKMS is a national resource that supports U.S. government 
users and its contractors, in the enforcement of their security policies for handling Type I and II 
information between their automated data processing systems. Users order key material for each 
SDNS device within their organization. In response, the EKMS provides a non-forgeable 
certificate plus keying material, which are then loaded into the SDNS device by the user during 
initialization. The certificates contain the user-specified rule-based access control policy for that 
device to enforce. 

User Key Material Requests 

Security Certificate 
& Key Material SDNS 

ELECTRONIC 
KEY MANAGEMENT 

SYSTEM 
(EKMS) 

Key Management Protocol 
Certificate & Key Material 

Exchange 

Results in a unique shared 
Traffic Encryption Key 

Security Certificate 
& Key Material 

Figure 2 SDNS Key Management and Distribution 

The SDNS Key Management Protocol (KMP) provides a powerful authentication and access 
control mechanism based on the exchange of the non-forgeable certificates between SDNS 
security devices. KMP runs at the application layer on top of a full seven-layer OSI stack within 

565 



each SDNS device. During the certificate exchange process, KMP compares the fields to 
determine if there is an intersection of security attributes. If there is an intersection, the keying 
material is used by the SDNS key generation algorithms to create a unique pair-wise Traffic 
Encryption Key (TEK) that is known only by those two devices. The TEK represents a secure 
transmission channel between two SDNS devices that can be used for data that meets the security 
criteria established during Key Management Protocol exchange. 

Data is transmitted over the secure transmission channel using a security protocol designed for 
operation at a particular layer in the communication stack. At the transport and network layers, 
SDNS has defined Security Protocol layer 4 (SP4) and Security Protocol layer 3 (SP3) 
respectively. These security protocols provide confidentiality by encryption using the established 
TEK, integrity, and access control services for data at their respective layers. Proper handling of 
labelled data by the security protocol is required to ensure that information is sent over the correct 
channel. 

In summary, SDNS provides a powerful set of tools for enforcing organizational security 
policies dealing with the handling of data within automated processing systems serving all of 
government and its contractors. The possiblities for interoperability among users is greatly 
increased by SDNS, first because it is based on standards, and second because the Electronic 
Key Management System (EKMS) is a national resource serving all of government and industry. 
The EKMS is scalable because, unlike earlier key management systems which are required to 
know about all authorized pair-wise connections, it is based on a rule-based access control 
system. 

The STU-III is an excellent example of the significance of interoperability and scalability to 
information security. Approximately 250,000 STU-III terminals are deployed world-wide, and 
virtually any pair of users with the proper clearance can communicate. SDNS is revolutionizing 
data security, just as the STU-III has revolutionized voice security. 

NETWORK ENCRYPTION SYSTEM 

The Network Encryption System (NES) is a family of components offering a set of tools for 
enforcing the user's automated data processing system security policy. The major components 
include the SDNS Electronic Key Management System (EKMS), the NES Product Server, and 
the NES security server. These components are shown in the Product Family in Figure 3. 

The EKMS provides SDNS keying material to the NES security servers either in the form of a 
physical operational key or seed key. The initial keying material is contained on a KSD-64A 
(physically identical to a STU-III key) and loaded during device initialization. A Seed key is 
used to establish a secure connection with the EKMS to receive operational key electronically. 
The operational keying material, which is valid for one year, includes the non-forgeable 
certificate with identification and security attributes, and information for generating Traffic- 
Encryption Keys (TEKs) between pairs of NES security servers. 

The NES Product Server provides Administration, Discretionary Access Control, and Audit 
functions to support a domain of NES security servers. The system administrator enters the 
configuration for each device, including addressing and access control information, then 
generates a configuration disk. This disk containing application software, static routing tables 
and identity based access control tables, is loaded into the security server during initialization. 

An NES security server provides SDNS services to one or more Hosts/Workstations running on 
a RED side LAN, and connects to a LAN or WAN on the unclassified BLACK side. The 
security server application of the NES will be discussed in more detail, following a discussion of 
the basic NES security platform architecture. 

566 



ELECTRONIC 
KEY 

MANAGEMEN1 
SYSTEM 

WORKSTATION 

Figure 3 NES Product Family 

NES Security Platform Architecture 

The NES security platform architecture shown in Figure 4, is a self-contained Tamper and 
TEMPEST protected device with a front panel, and host, network and diagnostic interfaces on 
the back panel. The front panel provides a keyceptacle for loading key material from the KSD- 
64A data key supplied by the EKMS. Also, there is a disk drive for loading the configuration 
information and application software contained on the configuration disk generated at the NES 
Product Server. The key material and configuration disk are read by the security platform during 
the start-up process. A cryptographic checksum, based on the key material and the configuration 
information, is generated and written back to the disk binding the disk to the security platform. 

Internally, the NES security platform contains a security kernel, and a separate RED and BLACK 
VMEbus1 that can accomodate standard commercially available VMEbus boards for running the 
application software. This concept is shown also in Figure 4. Four VME boards can be 
supported on the RED side, and two on the BLACK. The security kernel provides the basic 
SDNS functions to support different applications and enforces the required COMSEC 
assurances. Common Environment (CE) is the internal operating system running both on the 
VME I/O boards and in the kernel allowing task-to-task and board-to-board communication to 
occur, and allowing tasks running on the processor boards to invoke the SDNS services that are 
provided by the security kernel. 

1 VME (Versa Module Europe) is an IEEE standard defined by the P1014, IEC 47b working committee. 

567 



CONFIGURATION 

Figure 4 NES Security Platform Architecture 

NES Security Server Applications 

In the current applications, the NES security platform is viewed as a single-level secure 
telecommunications server for hosts or workstations residing on a classified Local Area Network 
(LAN). The RED side of the security server supports a LAN media interface allowing classified 
hosts residing on the LAN to send datagrams to the security server for processing. The security 
server then performs a source/destination address verification, adds an integrity checksum, 
encrypts the data, and sends the resulting unclassified data to the BLACK side. The BLACK 
side of the security server supports a LAN, or other telecommunication media interface, and adds 
a network layer header allowing the encrypted data to be sent to another remote SDNS device 
over an unclassified network. The unclassified network can be a single network or multiple 
networks (e.g., Internet), and can be made up of one or more LANs and/or Wide Area Networks 
(WANs). The ability to pass classified information over existing unclassified 
telelecommunication systems can offer a tremendous cost savings advantage to users. 

The initial product (endorsed on March 13, 1991) supports an 802.3 (Ethernet) interface on both 
the RED and BLACK sides of the NES security server. The upper right portion of the NES 
Product Family in Figure 3 shows the Ethernet LAN server in a network environment. Three 
versions of network application software are also provided for this server including DoD IP, 
OSI, and Transparent (for supporting proprietary network protocol environments). The Wide 
Area Network (WAN) security server product, also shown in Figure 3, provides an Ethernet 
interface on the RED side and an X.25 interface on the BLACK side. The WAN server 
application allows direct X.25 connection to a Wide Area Network eliminating the need for an 
external router. The ability to eliminate expensive network devices with the NES security device 
offers significant cost advantages and drives down the cost of security. Two versions of 
application software are currently supported with this product including DoD IP and OSI. Other 
interfaces planned include FDDI and 802.5 (Token Ring). 

568 



INFOSEC COMPUTER PLATFORM 

The INFOSEC Computer Platform utilizes the basic NES security platform architecture described 
above. However, unlike the NES security server applications previously described, which 
provide a host-side LAN media interface on the RED side, the INFOSEC Platform replaces the 
media interface board on the RED side with a computer processor board capable of supporting a 
variety of external peripherals and an internal hard disk. The INFOSEC Computer Platform 
Block Diagram including the security boundaries is shown in Figure 5. 

Quadrant 
Boundary > 

LAN/HOST 
or 

Peripherals 

Front Panel 

INFOSEC Loqic Boundary 

Network 
Interface 

Processor 

;:-:J::M::a;:i::::ssss massa 
Black VMEbus 

Keyceptacle   LED   Display   Floppy Disk   Battery 

Black 
Power 
Supply 

Network 
Interface 

[Diagnostic 
Interface 

Power 

Figure 5 INFOSEC Computer Platform Block Diagram 

SDNS Security Kernel Interface and Services 

The security kernel interfaces electrically with the RED and BLACK VMEbus using the standard 
VMEbus protocol, and functionally using Common Environment (CE). Application software 
uses CE to invoke the following security kernel services: 

Key Management Services These services are used to create and manage Traffic Encryption 
Keys (TEKs) that are created by the SDNS Key Management Protocol during the process of 
exchanging key material credentials with other SDNS devices. The TEKs are identified by a Key 
ID and provide a confidentiality service to applications running on the RED side at different 
security levels. A RED application may request that a TEK be created for a single security level 
or for a range of security levels, and for one or more compartments. 

System Management Services These services are used during initialization and operation to 
configure and manage information on the RED and BLACK processor boards. 

Application Control and Presentation Layer Services These services are used to 
manage connections initiated on the RED side between NES devices on the BLACK side. The 
NES identification, which is known on the RED side, is sent to the security kernel. This 
identification is then sent to the BLACK side where an Association is established with the 
destination NES using the seven layer OS I communication stack and the statically loaded 
network addressing information. This association is then used by the SDNS Key Management 
Protocol during key creation. 

569 



Encrypt/'Decrypt Services These services allow security protocols running on the RED and 
BLACK sides to encrypt or decrypt traffic using an established TEK identified by Key ID, which 
provide integrity. The TEK represents a cryptographic channel for passing single or multi-level 
information over the Unclassified BLACK side. 

Logical Task Flow Description 

The INFOSEC Computer Platform logical flow is shown in Figure 6. The RED processor is a 
VMEbus compatible 386-based processor board running the Trusted Xenix• Operating System, 
the Trusted SDNS interface software, and application software. The operating system, SDNS 
interface software and application software can be loaded from the internal disk (default), or the 
external floppy disk. The Trusted SDNS interface provides a trusted Common Environment 
interface between the security kernel and Trusted Xenix• allowing applications at different 
security levels running on the RED side to invoke the security kernel services. 

BLACK NSAP TO 
KMD TABLE 

3»* 

KbM 

Encrypted Data - 

BLACK 
NETWOKK 

Figure 6 Logical Flow Diagram 

The Security kernel runs a firmware implementation of the SDNS functions including the Key 
Management User Association (KMUA) process for Key Management, Application Control and 
Presentation services; Key Management Protocol (KMP) for performing the SDNS Identification 
& Authentication and key create functions; and the Security Protocol (SP) for performing the 
basic encryption/decryption functionality. 

The Black Interface processor is one of a set of VMEbus compatible processor boards capable of 
providing a media interface as described earlier. The processor runs application software loaded 
from the security platform floppy disk during the INFOSEC Computer start-up process. 

570 



APPLICATIONS and CAPABILITIES 

The INFOSEC Computer Platform is an evolutionary product built on previous CCEP and TPEP 
technology. This section discusses some potential applications and capabilities for this proposed 
INFOSEC platform, and suggests an evolutionary path to total communication security. Based 
on available hardware that can currently be integrated onto the INFOSEC Platform, three 
configurations are currently under consideration for development and NSA evaluation: the Multi- 
Level Secure (MLS) Workstation, the Secure Gateway, and the Communication Port Server. 

Multi-Level Secure (MLS) Workstation Application 

The MLS Workstation includes a monitor, keyboard, floppy disk, and optionally a printer, 
mouse, and streaming tape drive. The Trusted Xenix• Operating System and user applications 
are loaded from an internal hard disk. An application currently under development is the 
Enhanced Product Server (EPS). 

The EPS, in addition to performing all of the basic NES Product Server functions, will allow a 
System Administrator to remotely manage Identity Based Access Control (IBAC) and Audit 
information, and perform other system administration functions with NES Security Servers. 
This application is illustrated in Figure 7. EPS management software runs on the Trusted 
Operating system on the RED side of the MLS Workstation and communicates with EPS agents 
running in application software on the NES security servers located througout the network. The 
EPS agents collect audit information and respond to commands from the EPS manager to send 
audit, receive IBAC table updates, and perform other system functions. 

The EPS and NES security servers all communicate over a common unclassified network. The 
NES security servers provide SDNS security services to LANs or hosts running at a single 
security level. Each NES security server allows traffic to pass between it and another device 
keyed at the same security level. The EPS will communicate with all NES security servers keyed 
at different security levels. The EPS allows a user logged in at the Top-Secret level to manage 
the data-base on the Red side of the Top-Secret NES security platform, and a user logged in at 
the Secret level to manage the data-base on the Red side of the Secret NES security platform. 

TOP 
SECRET 

"    Host/ 
Workstation 

INFOSEC Computer Platform 
(EPS Application) 

SECRET 
.     Host/ 
Workstation 

NES Security Platform 

Figure 7 Enhanced Product Server Application 

571 



An NES application which can use the EPS capabilities is the Defense Simulation Internet (DSI). 
The DSI is a worldwide network which consists of a set of subnets operating at different security 
levels within the network domain. Each subnet is run by a local site administrator who receives 
direction from a central system administrator. Currently there are two approaches for 
administering this system. 

The first approach involves putting an NES Product Server at each of the subnets to allow the 
site administrator to locally create configuration disks for his set of local NES Security Servers. 
Because each NES device requires a unique configuration diskette, which specifies all other NES 
devices with which it is allowed to communicate - both within the local subnet and worldwide, it 
is necessary for the site administrator of each NES grouping to duplicate the environment to 
resemble all of the NES devices within a particular grouping. The second approach involves 
using a single NES Product Server located at the system administrator's central site, to generate 
the configuration disks for all NES devices and distribute them to each subnet. This approach 
can be very time consuming due to mail delays, diskette failures, or as a result of improper mail 
delivery. Since this scenario involves a worldwide network the central NES administrator option 
seems impractical. 

As one can see, each approach has its own drawbacks. In the first case, each site must contain 
an NES Product Server, which can mean a more costly configuration. In the second case, mail 
delays and other obstacles related to NES network configuration updates can result in lost time 
and or money. In either case there is a lot of room for error or loss of time and or money. A 
situation where errors could be propagated would be due to incorrect transmission of NES 
network grouping updates from the central NES Product Server or by mail/email. 

The application described above could be resolved much more efficiently and more cost 
effectively with the EPS. If there were an EPS being used in this situation a Product Server at 
each site would no longer be necessary. Additionally, with the EPS' multilevel capability, only 
one EPS would be required for both of the subnets which were operating at different security 
levels. Finally, the risk range for a B2 level of operation would be satisfied. 

Secure Gateway Capabilities 

The Secure Gateway configuration provides multiple Local Area Network interfaces allowing 
local area networks running in a dedicated or system-high mode to communicate securely with 
other remote networks or systems. The Trusted Xenix• operating system and applications are 
loaded from an internal hard disk. An application currently being developed for the Secure 
Gateway configuration is a Trusted Guard. This application will allow two classified networks 
to operate over an unclassified network and is illustrated in Figure 8. 

The basic guard function consists of the Trusted Xenix• Operating system which controls the 
access to a Secret Local Area Network or Host, and a Top-Secret Local Area Network or Host. 
A regrader function, executing as a trusted application, reads data from the higher Top Secret 
network and analyzes the information for compliance with a rule set. If the information succeeds 
the rule set analysis, the application performs a trusted write-down, allowing information to flow 
to the Secret side. By integrating this function into the INFOSEC Computer Platform, the 
function can be extended over an unclassified network. 

Depending on the particular situation, the trusted write-down can be either performed manually 
or automatically. The manual review before write-down can be implemented by a trusted 
reviewer (e.g., using a UNIX-like 'more' utility via the trusted path) and can be implemented to 
reject or accept messages based on content. An automatic trusted write-down can be performed 

572 



with a process which scans messages based on strict formatting message content. In either case 
Trusted Xenix auditing can be performed in order to log all security relevant events. 

SECRET 
LAN/Host 

TOP 
SECRET 
LAN/Host 

S* 

Trusted 
OS 

RED BLACK 

SONS 
SECURITY 

KERNEL 

Trusted 
OS 

RED 

SECRET 
, LAN/Host 

^ 
TOP 

ECRET 
LAN/Host 

INFOSEC Computer Platform 
(Trusted Guard Application) 

INFOSEC Computer Platform 
(Trusted Guard Application) 

Figure 8 Trusted Guard Application 

Communication Port Server Configuration 

The Communication Port Server configuration provides multiple RS-232 communication ports 
allowing Terminals, Hosts, or Workstations, authorized for different security levels, or 
compartments, to communicate via the SDNS functions. It is envisioned that various multilevel 
and single level operations can be supported using the Communication Port Server configuration 
as well as other multi-level interfaces to external sources such as STU-IIIs as shown in Figure 9. 

This example consists of a Communication Port Server with multiple interfaces to both STU-III 
connections and to local single level terminals, communicating over an Unclassified data network 
to a remote Trusted Guard which supports multiple single level LANs or Hosts. This, along 
with other types of configurations, will allow for cost saving and convenient configurations 
under which the NES platform can operate. 

BLACK 

SONS 
SECURITY 

KERNEL 

I rusted 
OS 

SECRET 
LAN/Host 

j«. TOP 
I     'SECRET 

LAN/Host 

INFOSEC Computer Platform 
(Communication Port Server) 

INFOSEC Computer Platform 
(Trusted Guard Application) 

Figure 9 Communication Port Server Application 

SUMMARY 

In summary, combining the NES hardware with a wide range of various secure applications 
developed on Trusted Operating Systems, will provide cost effective and convenient methods of 
implementing data and communication security. 

573 



SDNS SECURITY MANAGEMENT 

Wayne A. Jansen 
NIST 

Technology Building, A-216 
Gaithersburg, MD 20899 

1. INTRODUCTION 

The Secure Data Network System (SDNS) program began in August of 1986 through the sponsorship of the 
National Security Agency (NSA). The goal of the program is to establish a communications architecture 
and protocols for protecting both unclassified and classified computer networks. The SDNS standards are 
intended to facilitate the secure interconnection of open systems within an internationally recognized 
framework for communications. The SDNS architecture which provides such security services as integrity, 
confidentiality, authentication, and access control of user data, as well as key management and systems 
management capabilities, is based on the International Organization for Standardization (ISO) Reference 
Model of Open Systems Interconnection (OSI) [1]. 

The SDNS program ended in 1989, and made its results available through the National Institute of Standards 
and Technology (NIST) [2-4]. Those documents specify security protocols (SP) at the Network (SP3) and 
Transport (SP4) layers of the ISO Reference Model, a message security protocol (MSP) at the application 
layer, an application layer key management protocol (KMP), and a framework for access control. At the 
conclusion of the SDNS program, it was recognized that areas of security management, outside of key 
management, were incomplete. A follow-on effort to SDNS, the SDNS Upgrade Program (SUP), included 
tasking for security management with a focus on the key management and lower layer security protocols. 
The SUP produced an initial set of SDNS security management documents [5-9] by September 1991. They 
contain a security management architecture and specifications for the elements of management information 
for the SDNS protocols studied, including the underlying security mechanisms and cryptographic facilities 
on which the protocols rely. This paper gives an overview of the SDNS security management framework 
and elements of security management information. 

2. SECURITY MANAGEMENT IN THE SDNS ARCHITECTURE 

2.1        Management Services and Protocols 

In keeping with the commitment to OSI communications standards, SDNS security management builds 
directly upon OSI systems management. OSI systems management offers distributed network management 
capabilities, comprising five functional areas: fault management, configuration management, accounting 
management, performance management, and security management. It is the last of these functional areas 
upon which SDNS security management is based. 

The set of OSI systems management standards includes standards for an application layer service and 
protocol [10,11], used to convey management information and perform management functions. The 
management standards also include definitions of generic systems management information [12], and 
guidelines for the specification of additional elements of management information [13]. 

OSI systems management provides mechanisms for monitoring, control, and coordination of resources within 
the OSI environment. A managed object class is the abstraction used within OSI systems management to 
represent a view of a resource. The view rendered by a managed object class consists of a set of attributes 
that represent characteristics and properties of a resource. 

A managed object is an instance of a managed object class in which the attributes have values assigned. A 
managed object class can be thought of as a template for the instantiation of a managed object. The value 
assigned to a particular attribute (i.e., the naming attribute) allows an object instance to be distinguished 
from others of the same object class.   All management activities are conducted through the manipulation 

574 



of managed objects. For the sake of brevity, whenever the intention is clear from the context, the term 
"object" is used in this paper to indicate either an object class or an instance of an object class. 

A collection of managed objects pertaining to an open system is referred to as a management information 
base (MIB). Management applications interact according to a functional model based on asymmetric 
manager/agent roles. Through the Common Management Information Services and Protocol (CMIS, CMIP) 
[10,11], managers interact with agents to accomplish management activities. A system acting as an agent 
in relation to one manager, may in turn, play a manager's role with regard to other sub-agents to enable 
a broader span of control. Common operations for manipulating objects include the creation and deletion 
of objects, the getting and setting of attribute values, the evoking of predefined actions, and the sending of 
event reports. 

Note that the security management functional area differentiates itself from the other functional areas 
primarily by the sensitivity of objects managed, rather than the operations used to manage them. Objects 
representing security services, protocols, and mechanisms can be viewed as residing within a security 
management information base (SMIB). Depending upon the security policy of the system, the SMIB may 
or may not coincide with the MIB. Security management functions include the ability to: (a) manage 
security objects, their operational and administrative states, and the relationships between security objects 
and other objects; (b) report, collect, and review security events; and (c) establish and configure security 
audit trails.   However, only the last two functions apply exclusively to security management. 

2.2        Security of Management Operations 

Management operations, particularly those dealing with security management, demand a high degree of 
protection, due to their potential to interfere with systems operations. Two obvious ways to protect 
management operations are either to build protection into the management protocol that operates at the 
application layer, or alternatively, to have the management protocol protected by security protocols at the 
lower layers. The former approach is appealing for near-term implementations of CMIS and CMIP since 
it is self-contained and independent of the standardization progress of the lower layer security protocols. 
Nevertheless, SDNS security management takes the latter approach since the standards for lower layer 
security protocols and key management are already in place, and their use by management avoids having 
redundant mechanisms elsewhere in the architecture. 

The SDNS architecture prescribes a two-pronged scheme for the protection of communications, relying on 
both the key management protocol and a lower layer security protocol. The key management protocol is 
a self-protecting application layer protocol, used to establish security associations for lower layer security 
protocols. Security associations consist of a set of negotiated security services, and associated traffic key 
material. All other application protocols, including systems management, use an established security 
association through a lower layer security protocol. The security protocol enforces the protection dictated 
by the security association during the communications of the application. Because a management application 
can manipulate sensitive information concerning the formation of security associations, including those for 
itself, its operations must be protected to the same degree as those of key management, and its role 
restricted accordingly. 

The SDNS architecture requires key management functionality to be collocated with other applications 
within an end-system, whenever a lower layer security protocol is employed. Although collocated, the 
communication services afforded it are distinct to allow implementation in separate hardware components 
for high assurance environments. In such arrangements, key management may be considered as a hidden 
internal host. Figure 1 illustrates a dual stack model used to represent the partitioning of key management 
communication services from normal user communication services [14]. Note that because the key 
management protocol is the means by which keying material is provided to a lower layer security protocol 
entity, it must be able to bypass the lower layer protection to avoid the problem of recursion. 

SDNS key management is viewed as a distinct, yet integrated part of security management. It is considered 
part of security management because sensitive information is manipulated.   Because key management uses 

575 



APPLICATION 

PROCESSES 
USER APPLICATION 

SECURITY 

HA1TAGEMEHT 

USER 

UPPER LAYER 
PROTOCOLS 

1 XHP 1  1 CMP 

OSI LAYERS 
7. 6. 5. AND 4 

HAHAGEHEKT 

PROTOCOL 
STACK 

AT EITHER 
LAYER 4 OR 3 

SECURITY 
PROTOCOL 

SECURITY 
PROTOCOL 

OSI LAYERS 
3, 2, AID 1 

SHARED LOVER LAYER PROTOCOLS 

Figure 1: Dual Stack Model 

its own unique protocol and its operations are a prerequisite for providing protection to management 
operations, it is also a distinguished subset of security management. With this perspective, the dual stack 
model applies equally to key management and to security management as a whole. 

3. MANAGED OBJECT CLASS IDENTIFICATION 

3.1        Data Model Development 

The object-centric orientation of OSI systems management information modeling demands careful 
determination of the required object classes, their attributes, and their relationships to one another. A 
conceptual data model forms the basis for developing managed object class definitions. The data model gives 
an overview of the scope of SDNS security management information elements. 

The objects identified during the modeling process fall into two general categories. The first category 
contains information needed by key management and the lower layer security protocols to perform required 
security services. The SDNS key management and security protocols provide confidentiality, integrity, 
authentication, and access control security services. There are also pervasive service mechanisms such as 
audit trail and event detection, that are implicitly provided. 

The second category contains information needed to monitor and control the progress of security services 
and their underlying security mechanisms. This information includes system level information concerning 
the configuration of security protocol entities; security protocol entity information concerning the type and 
version of protocols that may be active in the system; algorithm information concerning the algorithm 
identifier and parameter values of cryptographic algorithms; and auditing information concerning the state 
of the system, protocol entities, and security associations. 

Figure 2 illustrates an object-relationship model of the SMIB. Further associations between these security 
management objects and other managed objects within the MIB are not shown. Within the figure, a single 
headed arrow is used to indicate a one-to-many relationship between objects in that diagram, a double 
headed arrow indicates a many-to-many relationship, and a line without arrowheads indicates a one-to-one 
relationship. The SMIB objects are elaborated further in the next section. The reader is referred to the 
SDNS security management documents [5-9] for a more detailed discussion of specific object class attributes 
than that given in this paper. 

576 



Figure 2: Object-Relationship Model of the SMIB 

3.2        Object Class Descriptions 

3.2.1 Identification and Authentication Objects 

The objects maintained in the SMIB for identification and authentication purposes are: 
(a) the system object, 
(b) the credentials object, and 
(c) the revocation list object. 

At most, only one instance of a system object is intended to be present within the SMIB for an end-system. 
The system object identifies the SDNS subsystem, its administration, and security policy. A common security 
policy must exist before a collection of open systems may intercommunicate. The policy constraints are 
reflected in the values of the attributes of the remaining objects within the SMIB, that control the nature 
and quality of the security associations that can be established. 

The credentials object and revocation list object are defined for authentication purposes. For SDNS 
authentication exchanges, the credentials object retains a valid certificate for the system. To corroborate 
peer certificates, the revocation list object retains an associated list of revoked certificates. Those 
end-systems wishing to intercommunicate obtain SDNS certificates signed by a mutually trusted party, the 
key management center. The key management center also issues certificate revocation lists. The data model 
allows more than one certificate to be associated with the system, if permitted by the system security policy. 

3.2.2 Security Protocol Objects 

The objects maintained in the SMIB for the lower layer security protocols are: 
(a) the SP entity object, 
(b) the initial value (IV) - SP association object, and 
(c) the SP association object. 

577 



The SP entity object is used to identify each security protocol entity in the end-system and convey associated 
information. The SP entity represented has the responsibility for protecting an instance of communications. 
Identification attributes of the SP entity object include the type of protocol, the version of protocol, and the 
operational state of the entity. Other attributes include general utilization statistics, protocol and security 
error counts, and error threshold limits for notifications. 

The IV-SP association object defines the envelope of interoperation that is permitted with another end- 
system. Its attributes indicate what security mechanisms must be in effect for an SP association to be 
established, in order to comply with the system security policy. The IV-SP association provides all the 
information needed to negotiate the security context between peer SP entities. This information includes 
the remote entity designator, access control permissions, the required security services, and associated 
cryptographic algorithm identifiers. One IV-SP association object may relate to several SP association 
objects. 

The SP association object represents the security context established for interoperation with a peer SP entity. 
It retains the security protection parameters and access control restrictions negotiated for the association, 
used to enforce the security context. It also retains information concerning the status of the association, 
such as event counters and thresholds. The information within each SP association object is derived from 
and therefore related to only one IV-SP association object. An SP association will not be instantiated 
otherwise. The relationship between IV-SP and SP association objects must be maintained in a logically 
consistent fashion within the SMIB. 

Within the context of this data model, the three SP oriented object classes are generic, since they represent 
only the common features of the lower layer security protocols. The use of generic object classes allows the 
data model to present a simple, yet accurate portrayal of the information. The generic object classes can 
be refined into object classes specific to SP3 and SP4 through an inheritance mechanism provided as part 
of the object-oriented nature of OSI systems management. 

3.2.3     Key Management Protocol Objects 

The object classes associated with key management (KM) are somewhat similar to those defined for the 
lower layer security protocols. The main exceptions are that the key management objects are not generic, 
and their attributes have an application layer orientation. The objects maintained in the SMIB for the key 
management protocol are: 

(a) the KM entity object, 
(b) the initial values (IV) - KM association, and 
(c) the KM association object. 

KM entity objects are used to identify key management protocol entities in the system and retain associated 
information. The key management protocol entities represented are responsible for the formation of 
cryptographic associations to be used by lower layer SPs. Attributes of the KM entity object include the 
entity name, the protocol identifier and version, the functional capabilities supported, and activity counters. 

The IV-KM association object defines the envelope of permitted interoperation with a peer end-system. It 
provides all the information needed to establish a security context with a peer KM entity. The information 
includes the remote entity designator, access control permissions, the required security services, and 
associated cryptographic algorithm identifiers. One IV-KM association object may relate to several KM 
association objects. 

The KM association object represents an established application association and security context between 
KM entities. It retains the security protection parameters and access control restrictions negotiated for the 
association, used to enforce the security context. It also retains information concerning the progress of the 
association, such as transaction counters and thresholds. The information within each KM association object 
is derived from, and therefore, related to only one IV-KM association object. This relationship between IV- 
KM and KM association objects must be maintained in a logically consistent fashion within the SMIB. 

578 



3.2.4     Cryptographic Objects 

The objects maintained in the SMIB that pertain to cryptographic mechanisms employed by the lower layer 
security and key management protocols are: 

(a) the cryptographic association (crypto association), and 
(b) the cryptographic facility (cryptofacility). 

The cryptographic association object contains information concerning the traffic key material formed through 
key management. Lower layer SPs use the traffic key material within the cryptographic facility to protect 
their protocol data units (PDUs). The attributes of the crypto association contain information regarding 
the appropriate application of keying material, the local and remote key identifiers, and the identifiers of 
the credentials used to form the association. Note that the data model allows a single cryptographic 
association to be used for multiple SP associations, or a single SP association to employ multiple 
cryptographic associations. 

The cryptographic facility (cryptofacility) object contains information for controlling the cryptographic 
mechanisms that comprise the cryptofacility. The information it contains allows the status, the contents, and 
the cryptographic algorithms of the facility to be monitored. The attributes of this object include the 
number of traffic keys loaded, the identifiers of loaded credentials and traffic keys, and the identifiers and 
parameters of the cryptographic algorithms supported. 

4. OBJECT CLASS SPECIFICATION 

41        Degree of MIB/SMIB Separation 

Object class specification efforts to date have only marginally addressed the security management area. The 
main reason for this is the lack of international standards for security and key management protocols. Many 
MIB objects are being, or have been, defined by OSI layer protocol standards groups and systems 
management implementor groups. Relationships between those object definitions and the ones defined for 
the SDNS SMIB are an important issue. A tightly coupled MIB/SMIB could allow disclosure of sensitive 
information through access relationships defined for non-sensitive information. On the other hand, a loosely 
coupled or disjoint MIB/SMIB could allow a greater degree of protection for sensitive information to be 
provided. 

For SDNS security management, the SMIB is specified completely independently of the MIB. That is, the 
entire set of SDNS security management object class definitions is treated as a separate subsystem from 
other sets of managed object definitions that may exist, though the latter may contain seemingly related 
object classes. For example, the lower layer security protocol object classes clearly contain information that 
relates to information contained within object classes defined for the network and transport layer protocols. 
A protected transport connection will, by definition, use an SP association. However, if separation is 
maintained, a manager that accesses the MIB to determine transport connection information cannot 
determine the SP association being used for that connection without gaining access to the SMIB, as well. 

The disjunction between the MIB and SMIB means that, for SDNS systems, security management can be 
made an autonomous capability with respect to the rest of systems management, perhaps requiring a higher 
level of authorization. This approach is consistent with the dual stack model mentioned earlier. Note too, 
that the ability to provide separation of the MIB from the SMIB may be disregarded in environments where 
it is not required by the system security policy. 

4.2        Refining Generic Object Classes 

Objects representing specific SP4 or SP3 entities are derived from the generic SP entity object through the 
inheritance mechanism. Inheritance enables the extension or specialization of an existing object class to 
form a new object class. In Figure 3, which illustrates the required specialization, an object at the arrow 
tail represents an heir of the object at the arrow head. 

579 



Figure 3: Specification of SP Entity Object Class 

All SP entity attributes are inherited or retained by the SP4 and SP3 heirs. Additional entity specific 
attribute information may be defined as appropriate for the specialization. Entity specific attribute 
information may include the service access points serviced and/or utilized, entity specific counters and 
thresholds. 

A similar refinement occurs for the other generic security protocol objects: IV-SP association and SP 
association. The IV-SP association and SP association object classes are specialized for both the SP3 and 
SP4 specific attributes. The main differences are in the security mechanisms available and how they are 
applied. For example, SP4 specialization includes attributes concerned with managing connection integrity 
through Transport sequence numbers. 

Besides new attributes, the SP3 refinement also requires additional object class definitions. Unlike SP4, 
which is an extension to the Transport protocol, SP3 is an independent Network protocol. Consequently, 
SP3 requires a full complement of information elements similar to those defined for other Network 
protocols. Note that the object class definitions for SP3 are based on a revision [15] of the original SP3 
standard [2]. One important difference is that the revised SP3 supports both connectionless and connection 
oriented network protocols, whereas the original SP3 supports only connectionless. Figure 4 gives the data 
model for these additional object classes, using the arrow notation defined earlier. 

Figure 4: SP3 Additional Object Class Definitions 

The additional SP3 object class definitions are: SP3 access control information (ACI), SP3 connection 
oriented network service (CONS), SP3 connectionless network service (CLNS), and SP3 circuit.  The SP3 

580 



access control information object contains details of the end-systems protected by the SP3 entity. This 
information is needed for situations where the SP3 entity performs a secure gateway function. The SP3 
CONS and CLNS objects serve primarily as placeholders for information regarding the type of network 
service. The SP3 circuit object represents an instance of communications that may be associated with either 
type of network service. 

4.3 The Containment Hierarchy 

OSI network management standards rely on a hierarchical schema called the containment hierarchy for 
relating object instances. This hierarchy indicates the access path to an object of a specific class. A set of 
name bindings is used to specify the possible relationships between a superior and a subordinate object 
instance. Each object class definition includes an attribute to uniquely name an object instance, relative to 
a superior object. Once, the name of an object instance is known, access can then be gained to the 
remaining attribute information for that object. 

To conform to this hierarchical naming approach, the network-oriented data model of the SMIB must be 
recast as a hierarchy. Each object of the data model, while being retained, may now be either an object in 
the hierarchy, or an attribute of an object in the hierarchy. The choice depends on the type of access 
needed for the information. Figure 5 illustrates a hierarchical schema for the data model of the SDNS 
SMIB. The tail and head of an arrow are used to indicate the name binding relating a subordinate object 
to its superior. 

SDKS 
SUBSYSTEM 

1 T T i - 
CREDENTIALS SP4 ENTITY 

CRYPTO 
DEVICE 

KH ENTITY 

\ 1 
' 

REVOCATION 

LIST 
SP3 ENTITY 

CRYPTO 

ASSOCIATION 

T T T T 
IV - SP4 

ASSOCIATION 

SP4 

ASSOCIATION 

IV - KH  * 

ASSOCIATION 
IH 

ASSOCIATION 

1 T ' T 1 
SP3 ACI 

IV - SP3 

ASSOCIATION 
SP3 

ASSOCIATION 
SP3 CONS SP3 CLXS 

T 1 
SP3 CIRCUIT SP3 CIRCUIT 

Figure 5: SDNS Security Management Naming Hierarchy 

The folding of objects of the data model into attributes of other objects is possible for several reasons. The 
hierarchical   nature  of management  information  implies  amalgamation  of disparate  information  at 

581 



conceptually distinct levels. Since attributes are specified using the ASN.l notation, complex relationships 
can be expressed without much difficulty. Some objects in the data model, because they enjoy a simple one- 
to-one relationship with another object, may be easily folded into that other object. 

The expression of the SMIB data model as a containment hierarchy has two notable features. First, the 
SDNS system object of the data model is considered a subordinate object to the uppermost object in the 
hierarchical schema, the system object, and renamed to be a subsystem. Second, the cryptographic 
association object is placed at the second level of the SDNS containment hierarchy because of its many- 
to-many relationship with the SP association object and need for equivalent accessibility. 

4.4        Incorporating Generic Object Classes 

The set of OSI systems management standards includes the definitions of managed object classes that are 
referenced by the various systems management functions (SMFs). The definitions are generic in the sense 
that they support the SMFs and are intended to be used in other specifications, either directly or as a super- 
class, for inheritance into specialized object classes. Wherever appropriate, these SMF generic object classes 
are used to provide additional management capabilities.  They include: 

(a) event forwarding descriptor (EFD), 
(b) log, 
(c) access control descriptor (ACD), 
(d) target access control information (ACI), and 
(e) authorized initiators. 

In order to use these built-in generic object classes and their associated SMFs, they must be specified as part 
of the SDNS subsystem.   Figure 6 illustrates their positions within the containment hierarchy. 

SDirs 
SUBSYSTM 

I 
EFD LOG 

1 
ACD 

1 
TARGET ACI 

\ 
AUTHORIZED 

IHITIATORS 

Figure 6: Naming Hierarchy for Generic SMF Objects 

The EFD indicates the conditions that must be met in order to forward a local notification as an event 
report to a destination for logging. It also contains the destination and backup addresses for the reports, 
providing flexibility in controlling the levels of event reporting. The log object class contains information 
useful for the collection of audit data, used to control the logging of information within management 
protocol data units. 

The ACD object class, along with the target access control information and authorized initiators, is used to 
control access to management information. Note that these objects are distinct from the SDNS access 
control objects. The ACD object class contains the access control policy, the global and default access 
control rules, and the item rules for the access control objects. The target ACI has the rules for protecting 
target object and attributes, and the names of authorized initiators. The authorized initiators object class 
provides the access control list, capabilities, caveats, codewords and authentication information. 

582 



5. SUMMARY 

Since its inception, the SDNS architecture has been aligned with the ISO Reference Model for OSI. SDNS 
security management continues this commitment through observance of, and reliance on, the OSI systems 
management standards. The elements of management information defined for the SDNS SMIB, along with 
the prescribed use of an independent protocol stack for security management operations, round out the 
existing SDNS standards in a complementary fashion. 

The SDNS security management specifications provide one of the few completed efforts in this emerging 
area and, as such, can provide guidance to future efforts. The defined elements of management information 
include object class definitions for the SDNS SP3, SP4, and key management protocols. Other defined 
elements concern support for cryptographic and other security mechanisms employed by the protocols. The 
SDNS managed objects are specified independently of objects pertaining to other functional areas. This 
independence provides a degree of stability for the specification and an opportunity to separate security 
management information from other types of management information. These features make SDNS security 
management a promising approach for both classified and unclassified environments. 

REFERENCES 

[1] ISO 7498, Information Processing Systems 
- Open Systems Interconnection - Basic 
Reference Model, 1984. 

[2] NISTIR 90-4250, Secure Data Network 
System (SDNS) Network, Transport, and 
Message Security Protocols, February 
1990. 

[3] NISTIR 90-4262, Secure Data Network 
System (SDNS) Key Management 
Documents, February 1990. 

[4] NISTIR 90-4259, Secure Data Network 
System (SDNS) Access Control 
Documents, February 1990. 

[5] SDN.1001, System Security Management 
Architecture for the SDNS Subsystem, 
Revision 1.0, September 1991. 

[6] SDN.1002,   Elements   of   Management 
Information for the SDNS Subsystem, 
Revision 1.0, September 1991. 

[7] SDN. 1003, SP3 Elements of Management 
Information, Revision 1.0, September 
1991. 

[8] SDN. 1004, Elements of Management 
Information for the SP4 Protocol, 
Revision 1.0, September 1991. 

[9] SDN. 1005, Elements of Management 
Information for the Key Management 
Protocol, Revision 1.0, September 1991. 

[10]      ISO/IEC 9595, Information Technology - 
Open     Systems     Interconnection 

Common      Management      Information 
Service Definition, ISO/IEC JTC1/SC21 
N5302, November 1990. 

[11]       ISO/IEC 95%, Information Technology - 
Open     Systems     Interconnection 

Common      Management      Information 
Protocol     Specification,     ISO/IEC 
JTC1/SC21 N5303, November 1990. 

[12]       ISO/IEC 10165-2, Information Technology 
- Open Systems Interconnection - 
Structure of Management Information - 
Part 2: Definition of Management 
Information, ISO/IEC JTC1/SC21 N6363, 
August 1991. 

[13]       ISO/IEC 10165-4, Information Technology 
- Open Systems Interconnection - 
Structure of Management Information - 
Part 4: Guidelines for the Definition of 
Managed Objects, ISO/IEC JTC1/SC21 
N6309, July 1991. 

[14] Paul Lambert, Architectural Model of the 
SDNS Key Management Protocol, 
Proceedings of the 11th National 
Computer Security Conference, October 
1988. 

[15] SDN.301, SDNS Security Protocol 3 
(SP3), revision 2.0, September 1991. 

583 



SECURITY MANAGEMENT: 
Using the Quality Approach 

Richard W. Owen, Jr. 
Computer Security Official 

Mission Operations Directorate 
Johnson Space Center, NASA 

Houston, Texas 77058 

Abstract:  This paper describes the process that took place 
when the Mission Operations Directorate (MOD) of the Johnson 
Space Center (JSC), NASA, transitioned from a classified, to 
a sensitive but unclassified, computing environment.  MOD is 
involved in the development and operations of two major 
programs.  Included in the paper are the organizational and 
total quality management (TQM) techniques that enabled the 
new security organization to be successful enough to receive 
special recognition from the NASA Administrator for avoiding 
approximately $30M in unnecessary costs for security. 

Introduction;  In the late 1980s the Mission Operations was 
beginning to phase down classified operations for the Space 
Shuttle program.  It was also involved in gearing up to 
provide similar operations support to the Space Station 
program, which definitely had no Department of Defense 
involvement.  To many, this meant that we no longer had any 
security requirements at all.  New laws at the state and 
federal level and an increasingly hostile environment of 
hackers, viruses, and worms ensured that some form of 
security must remain.  This paper will describe the new 
security program that was established for protection of 
sensitive but unclassified computing assets.  We will begin 
by examining the mission, structure, and size of the Mission 
Operations Directorate. 

Mission;  The purpose of MOD is to train the astronauts to 
operate the Space Shuttle through various contingency 
situations to accomplish its mission.  Please refer to Figure 
1.  It also trains the people that will monitor the Shuttle 
during its operation.  Process owners, which are like users, 
provide inputs to the Flight Design and Computation Facility 
(FDCF).  Here the various requirements are integrated into a 
mission plan.  The mission parameters of the plan are then 
sent to the Software Production Facility (SPF).  The SPF 
integrates the mission specific data from the FDCF with the 
specific Shuttle characteristics. Each Shuttle is different. 
The output of the SPF goes to the Shuttle Mission Training 
Facility (SMTF), various systems in the Flight Training and 
Planning Facility (FTPF), the Mission Control Center (MCC) 
and the Shuttle itself.  The astronauts train in the SMTF for 

584 



SPACE SHUTTLE FUNCTIONAL MISSION 

Payload Inputs -> Flight Design & Computational FAC (FDCF) 

Shuttle Specifics  > 
Software Production Facility (SPF) 

Shuttle Mission Training Facility (SMTF) 

Mission Control Center (MCC) 
T 
A 

i 
i 

Space Shuttle Orbiter 

Flight Training and Planning Facility (FTPF) 

Secretarial and General Administrative Workstations 

Figure 1. 

585 



SPACE SHUTTLE FACILITY SIZES 

Facility 

Name 

Numbers of 

O/S Lines of Code Languages Machines 

MDF 4.1M 14 13 194 

MRF 7.5M 12 2 102 

MTF 2.5M 4 6 9 

MMF 29.1M 21 6 151 

MTPF 1.9M 6 7 7 

Figure 2 

each specific mission.  Training also takes place in the MCC 
for those who will be monitoring the performance of the 
Shuttle during its mission. 

Figure 2 depicts the relative size of the facilities required 
to perform MOD's activities in support of the Space Shuttle 
program.  The Space Station program has a larger and more 
complicated mission objective, but the concept is the 
essentially the same.  The Space Station facilities are 
currently in the developmental stages. 

Organization;  The organization is composed of approximately 
600 government employees and approximately 4000 employees 
under four major contracts.  A simplified view of the 
structure of the organization is shown in Figure 3.  The 
director is supported by a staff for personnel, budget, and 
contract administration.  Reporting to the director are three 
assistant directors, one each in charge of the operations of 
each program.  The third assistant director is responsible 
for multiple program support.  The Shuttle is only considered 
part of MOD's responsibility for the duration of the mission. 
During that time, it is under the control of the Assistant 
Director for Shuttle Operations. 

All mentioned facilities, except the secretarial and 
administrative workstations, fall under the Program Support 
sub-directorate.  The facilities being developed to support 
the Space Station program are also in the Program Support 
sub-directorate.  Therefore all of the managers responsible 
for development, operation, maintenance, and sustaining 
engineering report to the assistant director for Program 
Support. 

586 



MISSION OPERATIONS DIRECTORATE 
ORGANIZATIONAL CHART 

Director 

Program 
Support 

A/Director 

Users of 
Shuttle 

Facilities 

All 
Facilities 

Personnel, 
Budget, & 
Contract 
Admin 

Space 
Station 

A/Director 

Users of 
Station 

Facilities 

Figure 3 

Security Organization:  The manager for Computer Security is 
called the MOD Computer Security Official (CSO).  Although he 
is an agent of the director, he is on staff to the Assistant 
Director for Program Support.  The relationship between the 
facility managers and the security personnel is shown in 
Figure 4.  All major facilities are managed by contractors. 
The Space Transportation System Operations Contractor (STSOC) 
provides operations, maintenance, and sustaining engineering 
support for MOD's Space Shuttle activities.  The Operations 
Support Contractor (OSC) provides operations and maintenance 
support for MOD's Space Station activities.  The Training 
Systems Contractor (TSC) provides major upgrades to Space 
Shuttle training facilities and is developing training 
facilities for MOD's use in support of its Space Station 
activities.  It will also provide sustaining engineering for 
these training facilities.  The Mission Systems Contractor 
provides major upgrades to the mission design and monitoring 
facilities for the Shuttle activities.  For Space Station 
activities they will perform sustaining engineering for the 
mission design and monitoring facilities which they are 
currently developing. 

As shown in Figure 4, each facility has a contractor Facility 
Manager who is responsible for the overall operation and 
maintenance of the facility.  Each facility also has a 
Computer Security Official (CSO).  The CSO is responsible to 
the contractor facility manager for the security of the 
facility.  The facility CSO is the first line of security 
management.  He performs facility security audits and risk 

587 



SECURITY ORGANIZATIONAL CHART 

MOD 
Computer 
Security 
Official 

Security 
Engineering 

Team 

Program 
Support 

A/Director 

MOD 
Facility 
Manager 

Contractor'a 
Facility 
Manager 

Contractor's 
Computer 
Security 
Official 

I System 
CSO 

r 
Figure 4 

analyses.  Using this information he then provides guidance 
to the Contractor Facility Manager for needed controls or 
countermeasures.  Each contract has a contractor Computer 
Security Official (CSO).  He is responsible to the contract 
Program Manager to ensure that all security performed under 
that contract follows current MOD guidelines.  He also 
directly reports to the MOD CSO.  Also supporting the MOD CSO 
is the Automated Information System (AIS) Security 
Engineering Team (ASET). 

AIS Security Engineering Team (ASET);  The AIS Security 
Engineering Team is composed of senior engineers from 
elements of both operations contracts.  Although there are 

588 



currently five current or past chapter presidents of the 
Information Systems Security Organization (ISSA) within the 
organization, for the most part members of the team have had 
no prior security training.  They were selected because of 
their background in hardware engineering, software 
engineering, systems engineering, operations.  The role of 
ASET is to keep abreast of the latest trends in security. 

Management Objectives:  In the operational plan for AIS 
security there are three main objectives:  establish and 
institutionalize the AIS security process; maximize the use 
of technology and standards; and maximize customer support. 

The establishment and institutionalization of the AIS 
security process must take place within all phases of the 
system development life cycle.  This process is guided by the 
use of plans, policy, and procedures.  Its goal is to produce 
and maintain accredited facilities.  The objective to 
maximize the use of technology and standards is both a thrust 
at not re-inventing the wheel and at staying current.  Where 
technology and standards are not available, the ASET uses 
assessments and prototyping of alternate technologies to 
produce physical, electronic, and administrative controls to 
mitigate the risk to MOD facilities.  The goal of this 
objective is to reduce errors without impacting the workload. 
ASET provides training, education, and assistance to its 
customers, the users, operators, maintainers, sustainers and 
managers, to encourage their support.  This results in 
efficient security features being built into facilities and 
being appropriately used to reduce operational costs and user 
inconvenience. 

The strategic objective of the AIS security organization is 
to drive AIS security standards.  This is being worked by our 
continual close working relationship with many of the 
standards setting organizations. 

Process:  The main thrust of our process is in being customer 
focused, managing the risks associated with the development 
and operations of our facilities and monitoring the metrics 
of how we are doing. 

The following describes how we do this within MOD.  By 
keeping current with industry, ASET recommends policy to the 
MOD CSO and acquires or develops tools to automate the 
management of security.  These policies and tools are 
provided to the Facility CSOs to aid them in accomplishing 
their jobs.  Based on his analyses and audit the facility CSO 
makes recommendations for risk acceptance or risk mitigation 
to the contractor Facility Manager.  A course of action is 
then established by the contractor Facility Manager which is 
based on the budget constraints.  This report is then 
reviewed by the Contractor CSO for consistent implementation 
within the contract and to ensure that no security issue has 

589 



been missed.  After approval by the NASA Facility Manager the 
report goes to the MOD CSO.  The AIS Security Engineering 
Team reviews the report and makes a recommendation to the MOD 
CSO.  If the NASA Facility Manager and the MOD CSO cannot 
reach agreement on what needs to be done, the issue is 
elevated to the Assistant Director and/or the Director.  All 
incidents, audits, and analyses are reviewed by ASET so that 
they can build a Security Management Plan for MOD.  This plan 
contains all facility identified, unmitigated risks and all 
cross-facility risks.  It also contains a plan for when and 
how risks will be reduced and all that have been accepted. 
By keeping the security metrics for the organization, the AIS 
Security Engineering Team is also able to make 
recommendations for improvement. 

What is Working:  MOD produced its first policy document, the 
MOD AIS Security Manual, in October 1990, the first of its 
kind at that level in the organization.  It is currently be 
updated with new findings and improvements. 

When the MOD AIS Security Manual was first released, all 
Space Shuttle facilities were evaluated for their compliance 
to this new policy.  It was discovered that these facilities 
did not comply with the new policy.  This was surprising 
since most of these facilities had just recently processed 
classified data.  The policies and the facilities then 
underwent close inspection.  The policies held up as being 
reasonable and meeting current industry practices.  It was 
determined that it would take $32 million to correct the 
facilities.  The ASET developed methods and tools that were 
tested and evaluated by the operations and development 
contracts.  These methods and tools allowed MOD to determine 
the risks to its facilities.  Following this exercise funds 
were only applied in areas where substantial return on 
investment could be justified.  This resulted in better 
security than would have been provided by the $32 million and 
only cost $3.5 million.  For this, the NASA Administrator 
gave the key members of the team an Administrator's Special 
Recognition award. 

The operations contractor had gained quite a bit of 
experience in upgrading existing facilities with AIS security 
controls.  The team was then given the task to produce a book 
on how security could be built in during the development 
phases of new systems.  This is particularly important since 
we are currently developing our Space Station facilities. 
The first draft was released in February 1991.  The final 
delivery of three of the five volumes is planned for 
September 1992. 

MOD is current in the analysis of risk to its systems and 
applications.  As these risks are identified, countermeasures 
are applied to mitigate the risks and/or the unmitigated risk 
is accepted by management.  Since even the best systems and 

590 



countermeasures can sometimes go astray, plans are in place 
to provide for operations continunity and contingency. 

The ASET is working with: 
o  the National Security Agency (NSA) in the area of 

Certification and Acceptation; 
o  the National Institute of Standards and Technology 

(NIST) in the areas of Generally accepted Systems 
Security Principles (GSSP) and integrity; 

o  the Institute of Electrical and Electronic 
Engineers (IEEE) on the security (DOT 6) standards 
for the Portable Operating System Interface for 
Computer Environments (POSIX); and 

o  the Information Systems Security Association 
(ISSA) in the areas of Data Valuation and Security 
Architecture. 

ASET, the Texas Gulf Coast Chapter of ISSA, and the 
University of Houston, Clear Lake produced a very successful 
security conference in November 1991.  The theme was 
technology in support of integrity controls.  The next 
conference is currently scheduled for June 1993. 

Prototyping is currently underway in the area of using 
Artificial Intelligence and neural networking to reduce audit 
data.  Risk Management software has been evaluated and a 
package selected.  It is currently being configured for MOD 
specific concerns.  Beta tests are being run on a system that 
will provide real time security monitoring of MVS systems.  A 
PC-based asset control package is also being evaluated. 

The most exciting accomplishment has been the paradigm shift 
in the attitudes of AIS security customers. Prior to the 
establishment of this new security organization, security had 
been an external entity.  The Facility Manager could always 
ask them "What should I do?" and then do what they said with 
security's money.  When the Facility Managers found out that 
this new, sensitive, but unclassified computer security 
program had no money, the first reaction was ''no money means 
no requirement."  Many Facility Managers thought that there 
was no further need for security. In fact, they did not want 
to hear of any security problems, especially from security 
people who were accustomed to telling Facility Managers that 
they had to stop work until they complied with a certain 
rule.  When the Facility Managers realized that the correct 
functionality of their systems depended on its security, they 
quickly regained their interest.  Luckily, by then the 
security people had a new perspective.  The security person 
would now analyze the threats to the vulnerabilities of the 
system and recommend appropriate countermeasures.  In fact, 
the security person now sees the Facility Manager as his 
customer.  It is now the security person's job to find all 
that can happen to the system, determine the likelihood of 
the occurrence and recommend the most cost-effective controls 

591 



or countermeasures.  With the facility CSO and contractor CSO 
keeping in close communications with ASET the latest in 
technology and procedures is always available.  When there is 
not a fix in the market, ASET uses its contacts with the 
vendors to determine if a fix can be made.  This paradigm 
shift is demonstrated in MOD Facility Managers speaking at 
security conferences and personally giving security briefings 
to their personnel. 

Areas for Improvement;  As with any quality project 
improvement must be continuous.  The areas in which MOD is 
currently pushing for improvement are in: 

o better use of inter-system integrity controls 
(digital signature, digital envelope), 

o testing of contingency plans, ID and password 
reduction and 

o continuing to drive the technology and standards 
in the needed direction. 

Vision Statement:  MOD will continue to push technology and 
standards to provide the appropriate controls to ensure that 
MOD's data has adequate integrity, availability, and 
confidentiality.  This will be accomplished with minimal 
inconvenience to the authorized user and not one cent more 
than is absolutely needed will be spent on security. 

Indicators of Success:  This is an ongoing process of 
continuous improvement.  MOD will continue to monitor itself 
for areas of improvement in keeping with its vision 
statement.  Final success will be realized: 

o when few authorized users are inconvenienced because 
of security, 

o when the cost of security features is not 
identified as a stumbling block to the facility 
development or operations, and 

o when there are so few noteworthy incidents that 
management must be reminded that the threat still 
exists. 

592 



A Security Reference Model for a Distributed Object System 
and its Application 

Vijay Varadharajan, 
Hewlett-Packard Labs., Filton Road, 

Stoke Gifford, Bristol, U.K. 

Abstract 

This paper outlines a security reference model for a distributed environment. We 
consider the type of security threats and attacks faced in such an environment, and 
the types of security services and security mechanisms, and the management functions 
that are required to counteract these threats. Then we consider an "instantiation" of 
the the security model to a simple distributed object environment. We describe how 
the required security services and mechanisms can be provided, how they interact, and 
what are the trust dependencies involved. Finally, we conclude the paper by briefly 
considering a specific practical object system showing the application of the security 
model. 

593 



1     Introduction 

Information and communication technology is on the threshhold of a new style of computing. 
While the last ten years have seen a focus on personal productivity, the 1990s will see the 
application of distributed computing to the productivity of organizations — supporting 
workgroups and organizations that share or trade information over a network. The trend 
is towards organizational distributed computing. Many styles of cooperation are possible 
ranging from simple communication between two entities, through the provision of services 
to a client by a server, to groups of cooperating entities acting together to perform complex 
tasks. 

Security plays a vital role in the design, development and practical use of the distributed 
computing environment, for greater availability and access to information in turn imply 
that distributed systems may be more prone to attacks. Recently, there have been several 
well-publicized attacks on and successful penetrations of distributed systems. For instance, 
Robert Morris's Internet worm dramatically illustrated how open are today's systems to 
intruders. The widespread publicity of such events has also helped to create a greater 
customer awareness of security issues, and the need for protection in the technology they 
buy. 

Figu e 1 shows a diagram of a simple distributed system architecture. It shows networks, 
use (people), information storage resources, computing resources, and peripherals. One 
may have various levels of interaction and various degrees of sharing between these entities. 

At one level, we may have interaction between different resources : such as host-host, host- 
peripheral, and host-storage resource. At another level, one may have interactions between 
applications in different entities. At the outer level, we can have interactions between users. 

Furthermore, the degree of interaction and sharing may also vary. At one level, there may 
be just transfer of information (e.g. email, edi). At another level, one may have sharing 
of computing resources (e.g. processors) and sharing of information storage resources (e.g. 
disks). At the next level, one entity (e.g. an object) may act upon another entity (e.g. 
object) to obtain a service from the latter. A still greater degree of cooperation occurs 
when entities jointly work together to perform tasks. 

In each of these activities various attacks can occur and hence the need for security measures 
become significant. Furthermore, in practice, organizational structure and boundaries are 
superimposed on the distributed computing environment. The diagram shown in Figure 1 
illustrates several organizations and several departments within each organization. This has 
impact on who has responsibility and authority over which parts of the distributed system. 
This in turn has implications on trust which is crucial for the placement and operation of 
security functions, and the interactions between them. 

In addressing overall security in a distributed system, it is necessary to integrate computer 
system security and communication security measures to protect information both within 
the system and betxoeen systems. Neither one on its own can provide the required complete 
protection of information in a distributed environment. For instance, access controls to 
restrict users gaining access to a resource within a system or on a network together with 
suitable flow constraints to regulate the flow of information are essential. Trusted computer 
system mechanisms are needed to ensure the enforcement of security controls and in the 
provision of the necessary assurance that the correct operation of the security measures 

594 



are maintained. Secure protocols are vital to the successful operation of security measures. 
Security mechanisms like encryption algorithms form an essential part of the overall solution. 
It is the harmonius integration of such security features which forms the key ingredient in 
the development of an overall secure distributed system. 

The paper is organized as follows : 

• Section 2 briefly describes a security reference model for a distributed environment. 
We consider the type of security threats and attacks faced in such an environment, and 
the types of security services and security mechanisms that are required to counteract 
these threats. We also mention the security management functions required. 

• In Section 3, we consider an "instantiation" of the the security model to a simple 
distributed object environment. We describe what security services are required to 
meet the needs, how the security services and mechanisms can be provided, how they 
interact, and what are the trust dependencies involved. 

• Finally, Section 4 considers a specific practical case showing the application of the 
security model for a practical object system. 

2    A Security Model Overview 

2.1     Security Threats 

This section describes a list of security threats that can arise in a general distributed en- 
vironment (see Figure 1). In particular, we have taken into account the threat statements 
from various standards documents (e.g. ISO 7498-2, X.400, ECMA TR/46, DAF Security). 

• Masquerading : This simply means the pretence of one entity to be another entity. By 
masquerading, an entity can get hold of privileges which it is not authorized to have 
in the first place. This can happen at different levels in a distributed system : within 
a computer system, a user or process might masquerade as another to gain access to 
a file or memory to which it is not authorized, while over a network, a masquerading 
user or host may deceive the receiver about its real identity. 

• Unauthorized use of Resources : This includes unauthorized access to both resources 
on the networks as well as within a system. For instance, within a computer sys- 
tem, this threat corresponds to users or processes accessing files, memory or processor 
without authorization. Over a network, the threat may be in the form of accessing 
a network resource. This may be a simple network component such as a printer or 
a terminal, or a more complex one such as a database, or some applications within 
the database. Thus unauthorized use of resources may lead to theft of computing and 
communications resources, or to the unauthorized destruction, modification, disclo- 
sure of information related to the business. 

• Unauthorized Disclosure and Flow of Information : This threat involves unautho- 
rized disclosure and illegal flow of information stored, processed or transferred in a 
distributed system, both internal and external to the user organizations.   Within a 

595 



system, such an attack may occur in the form of unauthorized reading of stored infor- 
mation, while over 'he network, the means of attack might be wiretapping or traffic 
analysis. 

Unauthorized Alteration of Resources and Information : Unauthorized alteration of 
information may occur both within a system (by writing into memory) and over the 
network (through active wire-tapping). The latter attack may be used in combination 
with other attacks such as replay whereby a message or part of a message is repeated 
intentionally to produce an unauthorized effect. This threat may also involve unau- 
throized introduction (removal) of resources into (from) a distributed system. 

Repudiation of Actions : This is a threat against accountability in organizations. For 
instance, a repudiation attack can occur whereby the sender (or the receiver) of a 
message denies having sent (or received) the information. For instance, a customer 
engages in a transaction with a bank to debit a certain amount from his account, but 
later denies having sent the message. A similar attack can occur at the receiving end; 
for instance, a firm denying the receipt of a particular bid offer for the tender even 
though it actually did receive that offer. 

Unauthorized Denial of Service : Here, the attacker acts to deny resources or services 
to entities which are authc rized to use them. For instance, within a computer system 
an entity may lock a file hereby denying access to other authorized entities. In the 
case of the network, the attack may involve blocking the access to the network by 
continuous deletion or generation of messages so that the target is either depleted or 
saturated with meaningless messages. 

2.2    Security Services and Mechanisms 

For a particular environment, one needs to determine which threats are applicable. The 
overall set of security measures required to counteract the identified threats constitutes the 
security policy. Here we will be only concerned with logical security. 

A security model should be applicable for a wide range of systems and applications, and 
consequently it is intended that it should include a wide range of security services that can 
be used and combined in different ways to meet different security policies. In particular, a 
distributed environment is likely to have multiple security policies and different authorities 
responsible for various parts of the system. We consider the aspect of multiple authorities, 
when we dissuss later the security management issues in Section 2.3. 

In developing a security service, we need to address at least the following questions : 

• what are the security information/attributes used by the service ? 

• what mechanisms can be used to provide the service and what axe the associated rules 
of operation ? 

• what are the authorities that are involved in the management of the service and its 
associated mechanisms ? 

596 



CD 
00 

<*K 

00 

a 
ra 

6 

c: 
O 

TO 
CO 

00 
en 

ok 
CD 
00 
3 

c 
E 
5 - 

1 

co- 0 

£ 0 

CO 

O) > 
a> 

00 

O 
a. 

— CD 
> C 

ly-v LX Vr2     \^ 
r    0     j 
r   *     1 
>    a>      ) 
S?>-':C 

CO' 0 
0 •' 

« 
/ 

CD 
00 

cAK 

CD 
Q 

Q. 
CD 
Q 

CO 

5 

^ 
0 
0 

co 

r   0     ) 

a 

> 
0) 

CO 

CD 
00 

ok 
\ 

• 
ai 

0 co c 

IX 
0 £ 

\rQ 
f      O       J 
C   *    J r   "35      j 
XJ^wJ^ 

0) 
J 

CO 

a) $• 

CD 

o 
> 

LU 
CD 
d 

O 
(J 
"O 

CD 

Z3 
_o 

cn 

Q 

Q- 
E 

CO 

< 

CD 

597 



• Identification and Authentication : This service provides the confidence that at the 
time of request, an entity is not attempting a m' squerade or to mount a replay attack. 

Authentication Information : Attributes such as password, keys, smart card, retinal 
scan, biometrics. 

Authentication Mechanisms : Possible authentication mechanisms include : 

- Claimant presents the authentication information (such as a password) to the 
verifier who then authenticates it. 

- Protected exchange of authentication information, e.g. using cryptographic tech- 
niques or one-way functions. 

— Challenge-response techniques. 

Either one-way or mutual authentication may be provided. In a general situation, 
when two parties wish to authenticate each other, they may need to involve one or 
more third parties. A simple model is when we have a single trusted third party. 
The nature of trust between each party and the third party is an important issue in 
determining the assurance of the service. Examples of trusted third parties include 
authentication servers, key management servers and cartification authorities. 

• Access Control and Authorization : This service provides the ability to limit and con- 
trol access to host systems, applications and information, and to limit what resources 
might do with the information contained, e.g. in applications, files. In an access con- 
trol scheme, we have certain entities (initiators) attempting to access other entities 
(targets). 

Access Control Information : Access control information used in the decision process 
includes the following : 

- individual identities of initiators and targets, 

- group identities of initiators and targets, 

- security labels of initiators (e.g. clearances) and targets (e.g. classifications), 

- roles (e.g system administrator, manager) of initiators and targets, 

- the actions or operations that can be allowed to be performed on the target and 

- other contextual information, which may include time periods (over which the 
access is granted or denied), routing information (thereby granting an access 
request for only some specific routes), and location information (thereby granting 
access only to initiators at specific end systems, workstations or terminals). 

Access Control Rules : An access control policy essentially specifies a set of rules that 
define the conditions under which initiators may access targets. The decision to grant 
or deny a particular request is determined using access control rules and access control 
information associated with the request. 

598 



Traditionally, there have been two major types of access control policies : Rule based 
policies and Identity based policies. Rule based policies impc ,e restictions on all ini- 
tiators. These rules form part of a mandatory access control. These controls are 
mandatory in that they apply to all entities and all information and the system itself 
has mechanisms which can enforce elements of the security policy. A common rule 
based access control policy is based on the use of security labels. It restricts access 
to resources based on the sensitivity of the target (e.g. classification) and the pos- 
session of corresponding access control information of the initiator (e.g. clearance). 
Identity based policies are based on individualized access control information such as 
the identity or role of the initiator. These are often referred to as discretionary in 
the sense that they do not enforce a set security policy, but merely permit a user or 
administrator to prevent access to files as the owner sees fit. Note that access control 
policies can also be specified in terms of groups of initiators or entities acting on behalf 
of initiators. 

A distinction often drawn between rule based and identity based access policies is that 
the former is administratively-imposed whereas the latter is owner-selected. In terms 
of this model, the distinction lies in the control and management of access control in- 
formation. A variety of choices of distribution or centralization of control is posssible 
in a distributed environment, ranging from a pure administratively-imposed policy to 
a pure user-selected one. This reflects the real world requirements xemplified by se- 
curity administrators or their agents (e.g. department managers 01 project managers) 
versus individually based access control policies. Moreover, the clearances of the rule 
based policy and the initiator attributes of the identity based policies are essentially 
the same. The clearances may be considered as particular access control information 
associated with the initiator. Hence some of the differences between the rule based 
and identity based access policies are not clear cut. 

Access control list mechanism is convenient when a fine granularity of access control is 
required and when there are few initiators. Revocation is also easier with this mecha- 
nism compared to others in the sense that revocation essentially involves appropriate 
modification of access control lists at the target. However this scheme is not very 
suitable when the initiator population is frequently changing. Capabilities are conve- 
nient when there are many initiators accessing few targets. The security label access 
mechanism is convenient when there are many initiators accessing many protected 
targets and a coarse level of granularity of access control is required. 

Delegation : An important requirement that commonly arises in a cooperating en- 
vironment and is associated with access control is that of delegation. The principle 
behind delegation is that one entity can authorize another entity "to act on its behalf". 
Delegation allows us to have a more flexible and dynamic form of access control. The 
security model can provide generic mechanisms to allow for delegation. The mecha- 
nisms allow for the following : 

- From the originator, or the delegator point of view, it may wish to give only a 
part of its overall rights, or even just a single right. Furthermore, it may only 
want to grant these rights for just a limited duration. Also it should be able to 
identify each of its delegations so that it may at some stage attempt to revoke 
one of these delegations. 

599 



- The entity which has been delegated must be able to prove its delegation to an 
end point. It may be required for the delegated object to know the t.cope of its 
privileges, in terms of what and who they are for, and how long they may last. 
This can be done by passing a delegation token. It may also be necessary to set 
further delegations or to request access to an end point using the rights delegated 
to it (unless the rights have been revoked). 

- The end point receiving a request from an entity claiming some delegated rights 
must be able to read, authenticate and verify the tokens specifying these rights 
and duration. The end point can then make an access decision based on knowl- 
edge of the requestor's rights together with the delegation token and the access 
control information. 

One can provide suitable delegation schemes using the authentication and access con- 
trol information and mechanisms described in [16]. 

• Information Confidentiality :   Confidentiality service provides for the protection of 
information from unauthorized disclosure. 

Confidentiality Mechanisms : The mechanisms that are typically used to provide 
confidentiality are based on cryptographic techniques. In an operating system nvi- 
ronment, it may be sufficient to protect the confidentiality of information just by .sing 
access control mechanisms. In a network environment, we can provide link-to-link or 
end-to-end encryption. 

- Symmetric encryption : E.g. DES 

- Public key encryption : E.g. RSA 

Confidentiality Attributes : These include : 

- Secret keys 

- Public and private keys 

• Information Integrity : Integrity service provides for the protection of information 
from unauthorized modification. The unauthorized modification may involve alter- 
ation, insertion, or deletion of information. 

Mechanisms : The provision of the integrity service involves : 

(1) generation of integrity checks (at the originating end). 

(2) verification of integrity checks (at the receiving end). 

Integrity mechanisms employ cryptographic techniques to produce integrity checksums 
which can be used to determine whether there has been any insertion, deletion or 
reordering of information. This is done using feedback chaining techniques. E.g. using 
the cipher block chaining (CBC) technique to generate the Message Authentication 
Code (MAC). 

600 



• Non-Repudiation : The non-repudiation service provides the proof of the origin or 
delivery of information. This protects the sender against the threat of false denial 
by the recipient (that the information has been received) and protects the recipient 
against the threat of false denial by the sender (that the information has been sent). 

The common mechanism for providing non-repudiation relies on the use of digital 
signatures. Typically the digital signature is calculated using the asymmetric (public 
key) algorithm described above. A hash function is needed when it is necessary to 
sign long messages. 

• Auditing and Accountability : The security audit service is complementary to all the 
security services described above in that it is not directly involved in the prevention 
of security violations but assists in their detection. The security audit can in turn be 
used to test the adequacy of the security controls and the conformance of the system 
with the security policy, and to assist in the formulation of any modification to the 
security policy. 

Auditing services are crucial both within a system and over the networks. Following 
audit analysis, an entity may be held accountable for its actions so that violations or 
attempted violations of system security may be traced uniquely to it. 

Auditing is provided by first defining the security related events and generating secu- 
rity audit and/or alarms. The security audit is then analyzed to evaluate the correct- 
ness and strength of the security policy. For secure reporting of audit information, 
auditing service may use other services such as authentication, integrity, confidential- 
ity and non-repudiation. 

• Availability and Prevention of Denial of Service : Denial of a service can be regarded 
as an extreme case of information modification in which the information transfer is 
either blocked or drastically delayed. 

A measure against such an attack is provided by arranging periodic exchange of in- 
formation between entities to ensure that an open path exists between them. The 
greater the frequency of such a request response mechanism, the shorter the time 
period during which the denial of service attack will remain undetected. However the 
disadvantage is that this reduces the effective bandwidth of the network. 

2.3    Security Management 

When describing a security model, we also need to consider how to manage these services 
and how changes in policy and its enforcement can take place. 

For instance, in the case of confidentiality and integrity services, it is necessary to manage 
the keys used in the encryption and decryption processes. In the case of access control 
service, we need to manage the access control information such as access control lists and 
the access rules.  Similarly in the case of authentication, authentication information, e.g. 

601 



passwords and keys, needs to be managed. In the case of auditing, the management of audit 
trails and audit analysis is necessary. 

In distributed systems, it is likely that there is no single authority that controls the entire 
environment. For instance, in an organization there may be several security managers 
responsible for a subset of users, objects and operations. This does not mean that it is not 
possible to control security in a distributed environment centrally. However even central 
security authorities end up trusting that the authorities responsible for local systems have 
implemented appropriate security. 

In practice, there may be several authorities performing different aspects of these security 
management functions. 

• Access Control and Authorization Management (Service : Access Control and Autho- 
rization) 

• Authentication Management (Services : Identification and Authentication, Non-repudiation, 
Information Integrity) 

• Key Management (Services : Information Confidentiality, Information Integrity) 

• Audit Management (Service : Auditing and Accountability) 

Authentication management activities typically include 

• associating authentication information (e.g. passwords, keys, identities, tokens) to 
system entities, 

• updating, modifying and revoking authentication information, 

• assisting in the authentication verification process 

• choosing the authentication mechanisms to be employed, and 

• interaction with other security services (e.g. access control) 

Access control management will typically include such activities as 

• establishing and associating access control information to system entities (e.g. access 
control lists to files, roles and capabilities to users), 

• updating, modifying, revoking access control information and rules (e.g. users "a" 
in role "A" with clearance Cl can access object "b" of classification C2 to perform 
operations "x,y, and z", for a period of time "t"), 

• enforcing access control rules (denying or granting access based on specific access 
control rules), and 

• interaction with other security services (e.g. authentication). 

Key management will be dependent on the type of encryption mechanism employed and 
the associated key distribution protocols. Key management will involve activities such as 

602 



• generation of suitable keys at intervals commensurate with the level of security re- 
quired, 

• determination in accordance with access control requirements of which entities should 
receive a copy of each key, 

• distribution of the keys in a secure mannaer, and 

• decisions involving updating of keys, deletion or removal of keys as and when they 
become obsolete. 

Audit management activities typically include 

• the definition and selection of security relevant events to be logged and/or collected, 

• the enabling and disabling of audit trail logging of selected events, 

• the analysis of audit trails, and 

• the preparation of security audit reports. 

2.4    Security Domains 

One way of managing a large distributed environment is to partition it in terms of separate 
security domains. A security domain may be thought of as a set of elements under a 
given security policy administered by a single authority for some specific security relevant 
activities. Examples of elements of a security domain in an open systems environment 
include logical or physical elements such as application processes, relays, and human users. 
One can have different relationships between security domains. For instance, domains may 
have a peer-to-peer relationships in the case of two company security networks. Domains 
may have subdomains. 

In order for interactions to take place between domains, it is necessary that there be common 
aspects in the security policies of the domains. Depending on the relationship between the 
domains, the secure interaction may come about as follows : 

• For secure interaction between two independent security domains to be feasible, the 
security policies must enable common services and mechanisms to be selected, possibly 
through negotiation, and security attributes in each security domain to be related to 
each other, possibly through mapping. 

• In the case of security subdomains within the same security domain, secure interaction 
between subdomains can be established by the security domain authority. 

• Secure interaction between domains via a common third party domain can be estab- 
lished by the common security domain for the sets of activities for which it is given 
jurisdiction. 

603 



In general, when developing such a multi-domain system, one needs to identify the activ- 
ities involved in each domain, the role and functions of the authorities involved and the 
interaction between these authorities. Typically, this may involve the need for additional 
third parties responsible for holding some security relavant information and acting as an 
arbiter in resolving conflicts. 

2.5    Trust 

Trusted mechanisms are essential to ensure the enforcement of security controls and in the 
provision of the necessary assurance that the correct operation of the security measures 
are maintained. Whatever the combination of security services and mechanisms have been 
chosen to meet the security requirements and to implement the security policy, it is necessary 
to trust some collection of agents - whether human, software or hardware - to carry out the 
security functions correctly. In particular, the security management authorities mentioned 
above need to be trusted to maintain the security of the system. 

In a multi-domain system, trust is based on mutual assurance which can be obtained either 
by something a domain is told or by something a domain knows. For instance, a subdomain 
could be told whom to trust by a superdomain. Or a domain may trust another as a result 
of negotiated policies. 

3    A Simple Distributed Object Environment 

In this section we consider an "instantiation" of the general security model to a specific 
distributed object environment. We consider a set of security threats, describe the security 
services required to counteract the perceived threats, look at how some specific mechanisms 
can be used to provide the services, and how they can be managed. We present specific 
choice of the underlying mechanisms. 

The system comprises a number of objects interacting and cooperating with each other via 
some network medium. The objects may be of coarse granularity, such as a machine, or 
of a fine granularity, such as a document. We will refer to the machine objects as simply 
machines. Each machine may support a number of objects, and at any instant, each object 
is supported on a particular machine. 

The objects communicate with each other by passing messages. So an object can invoke a 
certain operation on another object or make a request for a service from another object by 
sending an appropriate message. In order that the system can work effectively, a location 
service is required which keeps track of all the objects in the system. Furthermore suitable 
naming schemes will be necessary for assigning unique identifiers to the objects in the 
system. Some sort of name service exists as a component of most distributed object systems. 
For our illustration purposes here, we will not discuss these issues and assume that they are 
provided. We will be only addressing the security concerns. 

Consider the following typical scenario : an user A logs onto a machine W and carries out 
certain tasks. As part of this computation, an object 01 may require some service Serv 
from another object 02 residing on a remote machine S. 

Figure 2 shows an example of such a situation. In considering the security services required, 

604 



we first need to identify the security threats in such an environment. In fact, most of the 
security threats considered earlier are applicable here. 

3.1     Security Threats 

Typical security threats that can occur in the above scenario include the following : 

1. Masquerading. This might occur for three kinds of entity : 

(a) a user A' pretending to be user A either to the local machine or to a remote 
machine. 

(b) an object 01' pretending to be the object 01 in sending requests. 

(c) a machine object W pretending to be the machine W. 

2. Unauthorized access to an object, e.g.  an object 01 requesting a service Serv from 
the object 02 for which it has no authorization. 

3. Threats to communication security 

(a) modifying the messages between machines W and S, thereby affecting the contents 
of the service request from 01 to 02, and the returned results from 02 to 01. 

(b) eavesdropping on the messages between machines W and S. 

3.2    Security Services 

We now consider one way of providing the security services to counteract the above threats. 

We will assume that each machine object has a Security Facility (SF). For instance, this 
may be part of the Object Management Facility (OMF) of the machine, which is typically 
responsible for message delivery, object location and resource management. The SF1 is 
a trusted entity and is responsible for enforcing the security policy and controls on that 
machine. The role and use of SF will become clear as we describe the security services and 
how they are provided. In particular, in the DoD TNI (Red Book) environment [2], SF can 
be regarded part of the Network Trusted Computing Base (NTCB). 

The security services required to counteract the above threats are as follows : 

1. To counteract masquerading, we need the following : 

(a) User Authentication Service 

(b) SF Trust. The local SF is responsible for identifying the source of the request. 

(c) SF Authentication Service 

2. Access Control and Authorization Service 

'In fact, OMF is also trusted. 

605 



o 

CD 
-i—- 

CO 
>^ 

CO 

o 

o 
"O 

CD 

CO 

Q 
"O 

CD 

~Q_ 

E 
CO 

< 

CD 

:5 

606 



3. To counteract communication threats, we need 

(a) Integrity Service 

(b) Confidentiality Service 

4. Auditing Service 

• User Authentication Service : When a user logs onto a machine, the machine's 
SF needs to verify the identity of that user. This is done by the user authentication 
service. With regard to how and where the authentication process can be carried out, 
we can have two cases : 

- (i) : The machine's SF authenticates its users locally, with all of the authentica- 
tion process administered locally. 

- (ii) : The workstation's SF authenticates its users locally, with the assistance of 
an Authentication Server (AS). AS is a trusted entity on the network. One such 
entity per security domain is envisaged. 

Each method has its merits and disadvantages. In the case of (i), local verification of 
the users may te attractive from performance point of view; however problems may 
arise with updating of authentication information of valid users in the domain. This 
may be the case where any user is able to request services by logging onto any machine 
on the network. Case (ii) is more suitable for such a situation; however, verification 
requires remote communication. 

The type of authentication information used may vary from the knowledge of a pass- 
word (or PIN) to possession of an intelligent token containing a detailed set of user 
related information, e.g. in the form of a smart card. 

Different authentication mechanisms are possible to meet this requirement : for ex- 
ample, the challenge-response scheme mentioned earlier. Challenge response authen- 
tication mechanism avoids the problem of sending the password in plain. 

- case (i) : Assume that users and machines have agreed on a publicly available 
one-way function to be used for authentication. The machine's SF keeps a table 
of user related authenticated information, e.g. keys and passwords. 

When the user tries to log in, a challenge is issued to him by the machine's 
SF in the form of a fresh random number. The user calculates the response by 
applying the publicly known one-way function and his key to the random value. 
The result is returned to the SF in the machine. Now the SF is able to compare 
this value with its own calculation, using the alleged user's key. 

- case (ii) : Once again, assume that a publicly available one-way function is 
known to all entities in the network. The AS (and not the SF) keeps a table of 
user related authentication information, e.g. keys and passwords. 

When a user tries to login, a challenge is issued to him in the form of a fresh 
random number. There are two possible schemes, depending upon the protocol 
chosen to provide the service. 

607 



(a) The SF in the workstation itself can issue such a challenge to the user. The 
user calculates th „• response by applying the publicly known one-way function and 
his key to the random value. The result is returned to the SF in the workstation. 
Now the SF sends the challenge and the response, together with the appropriate 
user information to the AS for verification. 
(b) The SF in the workstation passes the user's login request to the AS and the 
AS issues the challenge through the SF in the workstation. The user once again 
calculates the response by applying the publicly known function and his key to 
the random fresh value and the result is returned to the AS for verification. 

Such challenge-response schemes can be implemented using either the symmetric or 
the public key approaches. 

- Symmetric key approach : Here the SF (case (i)) or the AS (case (ii)) has the 
secret keys of the users. The user employs his secret key in calculating the 
response to the challenge. The SF or the AS uses the alleged user's stored secret 
key in its verification process and compares it with the result received from the 
user. 

- Public key approach : In this case, only the public keys of the users are kept by 
the SF (case (i)) or the AS (case (ii)), whereas the users' private keys are held 
only by the users or b1 their smart cards. The user now applies his private key 
to the random challenge value and the AS uses the public key of the alleged user 
in checking the value. 

Note that Kerberos [23] provides a symmetric key approach, whereas DASS [24] uses 
public keys. Both these use timestamps instead of challenge-response. 

In the schemes described above, the user must have the means to be able to perform 
the calculation on the issued challenge. This may be achieved using a smart card, 
given the appropriate interface to the workstation. The smart card can contain the 
one-way function with the user key bound in, so that it can return the response for 
a given challenge. (In fact, one can make use of the smart card to store additional 
information, such as the privileges of the user.) 

Furthermore, it is necessary to protect the SFs in the machines and the AS. In the 
case of symmetric key approach, this table needs to be protected for both secrecy and 
integrity whereas in the case of the public key only their integrity must be protected. 

• SF Authentication Service : Return to the scenario where an object 01 in a ma- 
chine W makes a request for a service Serv from an object 02 on a remote machine S. 
The SF authentication service provides the confidence to both communicating parties 
that the other is the one who it claims to be. That is, both SF of W and SF of S have 
a guarantee that the other is as claimed. 

First consider the nature of communications between W and S. One type of communi- 
cation is whereby the two machine objects setup a link which would exist for a session, 
allowing the exchange of several messages. Alternatively, links may be set up for the 
exchange of each single message. In the first case, the mutual SF authentication 
process can be performed once a session, whereas in the second case, authentication 
would be needed for every message. 

As in the case of user authentication, this service may be provided in two ways : 

608 



- (i) : SFs authenticates each other without the assistance of a trusted Authenti- 
cation Server. 

- (ii) : SFs authenticate each other with the assistance of a trusted Authentication 
Server. 

In (i), each SF contains a table of keys and passwords of all the other SFs, and the 
SFs have agreed on a public one-way function to be used in the authentication. 

One simple scheme is whereby the SFs can authenticate each other is using these keys 
directly. For instance, the sending SF can send a value obtained using the one-way 
function together with the key and the current time. The receiving SF can use the 
knowledge of the secret key to check the value sent. As long as the current time 
is within an appropriate "window", it is accepted by the receiving SF. Note that 
a limitation of this scheme is that replays are possible within the time "window". 
Alternatively, one can use a challenge-response mechanism. 

In this case, when SF1 wishes to authenticate itself to SF2, SF1 first lets SF2 know of 
its desire to do so. SF2 responds with a challenge. SFl now calculates the response 
using its key and the one-way function and returns it back to SF2. Now SF2 is able 
to compare this value with its own calculation, using the alleged SFl key. Once again 
such a challenge response mechanism can be implemented using a symmetric key or 
a public key approach. 

Case (i) may be simple to implement. However as before, problems may arise with 
respect to updating of authentication information. In general, this is less of a problem 
for SF authentication case than for user authentication. 

In case (ii), the AS keeps a table of authentication information (e.g. keys) for all 
the SFs. When SFl wishes to authenticate itself to SF2, it first authenticates itself 
with the AS in the usual manner. The AS now provides an authentication token to 
SFl which it can use to authenticate itself to SF2. When SFl presents this token 
to SF2, SF2 should have the means to verify the authentication. SF2 may carry 
out this verification process on its own or may involve the AS. This is dependent 
on the structure of the token and the protocol used. Typically such a protocol will 
also enable exchange of keys between the SFs to provide for communication security 
services. Once again, such schemes can be implemented using either a symmetric key 
or a public approach. 

• Access Control and Authorization Service : The main role of the access control 
service in this example is to apply control over messages between objects, including 
the direct interactions of the user with his machine. In providing the access control 
service, we need to decide the following : 

- What access control information is used in the decision making process? In the 
implementation, this information may be implicitly stored or may be derived. 

- What access control rules are required? 

- What authorities are there in the implementation? 

Returning to the scenario, we have an object 01 in a machine W with SFl wishing 
to make a request on another object 02 on a machine S with SF2. 

609 



Access Control Information and Access Rules : 

The access control information used in the specification of access rules can be based 
around some attributes of the initiating object (01), the target object (02), and the 
action being attempted. 

Typical attributes of the initiator and the target objects that can be used include : the 
identity of the object, the class of the object, the owner of the object, the membership 
of the owner or object in some domain, his or her role, privileges associated with the 
objects, and sensitivity /integrity labels associated with the objects. As for the action 
being attempted, two approaches are possible. First, the decision may be based simply 
on tie message type. Secondly, the decision may be based on more fundamental 
properties: the familiar "know-about", "read", "modify", "move" and "delete", and 
so on. 

As objects are created, they must somehow have access control information associated 
with them, by a general default, or on the grounds of their creation in a certain 
context, such as a containing object. Thus, the correspondence between message 
type and creation is important. Furthermore in system operation, there may be a 
need to change the access control information and rules associated with them. These 
depend on the access control policy. For instance, the policy might permit some users 
to change the access control information to certain ob ects, whereas for some other 
objects, this may be totally under the control of the S' . 

Using the above access control information, in this example, one can for instance 
specify identity-based, group and role based, label based access or capability based 
access control policy rules. 

Also the chain of messages which cause the message and the attributes of the inter- 
mediary objects might be important. Where there is a notion of binding, where one 
access control decision corresponds to several interactions, this is practicable. How- 
ever, checking chains of arbitrary length may be too heavy for a scheme based on 
decisions for every call. If this is the case, perhaps it may make sense to restrict the 
decision either to the immediate originator of the message or to a combination of the 
first and last in the chain. 

Feedback to callers needs to be designed with "know-about" rights in mind. If a user 
tries to access an object on the remote machine, five things may happen: the object 
might not exist; the object might exist but fall outside the restricted view granted to 
the user by the owner of the owner of the remote machine; the object may not support 
the chosen message type; the object may not be allowed to respond the chosen message 
type under the restricted view; the object may be allowed to respond to a supported 
message type. It is desirable that the responses to the remote user in the first and 
second cases, and in the third and fourth cases, be the same. For the third case, this 
may require some discipline on the part of the developer. 

Authorities 

The access mediation process consists of two parts: First the access request by an 
object for an action on another object needs to evaluated using the relevant attributes 
of the objects in question and the specified access control rules. We will refer to the 

610 



entity which performs this function as Access Decision Facility (ADF) [7]. Secondly, 
the decision is enforced thereby either allowing the access requeue or denying it; this is 
carried out by an Access Enforcing Facility (AEF) [7]. Now the question to consider 
is how many such AEF and ADFs do we have for our application and how are they 
distributed? Several alternatives are possible, as we describe below. 

First, note that as there is no notion of binding between objects, it seems necessary 
that access control checks need to be performed call by call. Secondly, we will assume 
for this example that there is no central access control authority which decides who 
can access what servers. Thus there are three possible locations for authority: the 
target SF, the initiator SF and the target object itself. 

SF1 can enforce control over outgoing messages so that an initiator may not perform 
an action which is not in conformance with the policy for the initiator. SF2 can 
enforce control over the incoming messages so that the target object 02 may not 
receive a request that is not in conformance with the access control policy for the 
target. The object 02 itself may perform additional controls to decide whether to 
grant the request or not. In the case where both objects reside on the same machine, 
the controls can be enforced at the SF and/or at the target object. 

Enforcing control at SF1 will help to eliminate some calls at the local end, thereby in- 
creasing efficiency. Enforcement at SF2 may be adequate for many sit' ations whereas 
there may be certain circumstances where at least some of the enfo; -ment needs to 
be performed by the destination object rather than the SF. 

This may be the case when understanding of the semantics of the message is required 
in making the access decision. For instance, a given message may result in processing 
which creates, deletes or moves objects, under an arbitrary message type. If the access 
policy at the SF is described in terms of read, modify, destroy and so on, the SF will 
not be able to interpret the message in these terms. One possibility may be for the 
SF to pass on access information to objects in the form of hints, expressed in terms 
of read, modify, destroy and so on, and let the object to make the decision based on 
these. However, this will place extra trust assumptions on the object. 

Alternatively, access control rules can be defined in terms of the message types. Cre- 
ation of objects requires their entry in the access control scheme. This can be taken 
care of using the primitives provided by the SF. Given that the SF is always involved 
in object creation, the involvement of the local SF in access control decision can help 
solve the problem of the correspondence between message types and object creation. 

Related to the decision of ADF and AEF placement is the problem of the location of 
information representing the state of access control. It may make sense to associate 
information on restrictions on access to an object with the object itself. However it 
is appropriate to store such information in the SF which is protected and trusted, 
whereas an object may not be. 

611 



Proxy or Delegation 

An important requirement that commonly arises in cooperating object-oriented sys- 
tems and is associated with access control is that of delegation. The principle behind 
delegation is that one object can authorize another object "to act on its behalf". 
Delegation allows a more flexible form of access control. 

Returning to our scenario, the delegation situation occurs when the object 01 autho- 
rizes an object 03 to make a request on his behalf to object 02. Delegation is secured 
by verifying that an object that claims to be acting on another's behalf, is indeed 
authorised to act on its behalf. In practice, this also involves secure communications 
between objects. The delegation schemes considered in [16] are applicable for this 
example. In particular, the nested or linked token protocol for delegation can be used 
here. Once again we can implement these using either public key or symmetric key 
cryptosystems, as described in [16]. We will not describe these schemes here. 

• Integrity Service : The role of this service is to ensure the integrity of messages 
transferred between the machines is maintained. For instance, considering our sce- 
nario, we need to ensure that the integrity of the request from the object 01 from the 
machine W to object 02 in the machine S is protected. 

Following the SF authentication process (cf. SF Authentication Service), this would 
have resulted in a key exchange between SFs which can now be used to provide ' le 
integrity service. Depending on whether symmetric key or public key method aad 
been used, we have different possibilities. 

Symmetric key approach : First the message whose integrity needs to be protected is 
first hashed and then the resulting hashed (smaller) message is "signed" (encrypted) 
using the sending SF's key to produce a checksum. The SF at the recieving end can 
then calculate the checksum and see if it matches with the received one. This would 
not only ensure message integrity but also provide origin authentication as the sending 
SF's key has been used. In practice, one may include other parameters within the 
message such as a sequence number and a timestamp. 

Public key approach : With the public key system, the hashed message can be signed 
using the sending SF's secret key of the PK system to produce the checksum. The 
receiving SF can verify the checksum using the public key of the sending SF which it 
knows. Once again this provides message origin authentication and integrity. In fact, 
this scheme also provides non-repudiation, as no other SF could have generated the 
checksum. This is not so for the symmetric scheme as the receiving SF also has the 
ability to generate the checksum. 

• Confidentiality Service : This service provides confidentiality of messages between 
the machines, for instance between W and S in our scenario. Once again, following the 
SF authentication process, this would have resulted in the exchange of keys between 
the SFs, and we can use these keys in the confidentiality service. Computational 
requirements may constrain us to use a symmetric key approach in the provision 
of this service. The messages will be encrypted by the sending SF, which can be 
decrypted by the receiving SF. 

• Auditing Service : The main role of the audit service is to collect security relevant 
information from system operation that can be used to test the adequacy of the 

612 



security controls. 

In this example, from above we see that SF in the machine plays an important role 
in the operation and management of security services. SF is responsible for enforcing 
security controls in the machine and is a trusted entity. So it is natural that SF should 
be involved in the auditing process. 

The security policy defines those events that are security relevant. Some typical 
security relevant events in this example may include : request for some specific ac- 
tions such as creation of new objects, deletion of objects, requests from some specific 
objects/machines, requests to some specific objects/machines, usage of some special 
objects, failure of requests, events causing chr.ngeg to access control rules and access 
control information. For each recorded event, the audit record can identify : date and 
time of the event, user/object identity, type of event and success or failure of event. 
For creation or deletion of objects, the record can include the name of the object. 

The security audit record can then be analyzed locally, or a suitably filtered version 
of the record can be sent to a trusted authority for further analysis. In this example, 
this trusted authority could be the Authentication Server. 

3.3    Trust Dependencies 

Some of the trust dependencies in this example include the following : 

• All inter-object communications goes via SFs and the SF is trusted to convey the 
requests of objects it is managing accurately. 

• Information stored in the SF is trusted to be secure and the SF is trusted to manage 
the information that it holds. 

• The SF is trusted to operate correctly in the provision of all the security services. 

• The SFs trust each other to operate correctly. 

• It is not possible to for a user/object to be able access the representation of the object 
underneath the SF or at the resources of the SF itself. 

• An extension of the proposed solution may allow different SFs to be trusted to different 
degrees. Here a service request can have the name of the originating SF marked within 
it, which can then be used to decide whether a service request shoud be granted. 

• The user trusts the objects which are acting on his behalf not to make requests which 
he does not authorize. 

• The Authentication Server is trusted to operate correctly. Information stored in the 
Authentication Server (e.g keys) is trusted to be secure and the Server is trusted to 
manage them. 

A more general environment may have several such domains, each having for instance, one 
such authentication server. In such a situation, we can extend the above schemes providing 

613 



secure peer to peer interaction between these servers. This would in turn allow a user/object 
in one domain to request a service from another domain. For this solution, once again one 
can at least envisage two scenarios : In the first scenario, we have another trusted authority 
at a "higher level" which is responsible for managing the authentication servers. Functions 
of such an authority include for instance secure storage and maintenance of authentication 
information of the authentication servers of each domain, and secure transfer of information 
between authentication servers. 

4    Specific Case :  Cooperative Office System using Mobile 
Personal Computers 

In this section, we briefly outline how we can use the above instantiation to provide a 
security solution for a specific practical case. 

4.1     System Description and Object Model 

Assume that there are a number of users and each user has a mobile personal computer. 
Typically a user stores objects such as his diary, mail, some specific documents that he may 
use in his computer. The user can connect his computer to a public switched telephone 
network, and communicate with other users and computers. For instance, he may send mail 
to other users or access documents from other computers. 

At any one time two MobilePCs can send messages to each other via some medium, which 
in this note is assumed to be a public switched telephone network. It is significant that the 
system is largely disconnected at any time, and that communication is based on sessions. 
Each machine may have a number of objects; the granularity of these objects may vary. In 
fact, the machine itself can be regarded as an object. However when we refer to an object 
in this note this denotes an object residing on the machine. 

Here are some characteristics of (and assumptions about) the object model. 

• Each object has globally a unique identity2. 

• At any one time, a MobilePC may communicate with only one other MobilePC. During 
a communication session, the MobilePC has a local user — its owner — and a remote 
user. 

• The communication is assumed to be asynchronous in nature. The object model 
provides transparency of location across two MobilePCs engaged in a communication 
session. 

• The model has the concept of an Object Manager (OM) which is reponsible for basic 
message delivery, object location and resource management. Each machine has a 
single OM which manages all the objects present in that machine at a given time. 

2This may not be guaranteed absolutely. 

614 



• Messages must pass through the OMs of the sender and the recipient. (These may 
be identical.) Furthermore, note that an OM can send or receive messages in its own 
right. 

• An object belongs to an object class which determines its functionality. 

• The model has both presentation and semantic objects. As far as the OM is concerned, 
the difference lies in a semantic object's ability to be deactivated and re-activated. 

4.2    Security Threats and Services 

User A uses his MobilePC to dial user B's MobilePC. After the connection ii, established, 
two users can communicate with each other and manipulate each other's objects. The types 
of threats in such an environment are as follows : 

1. Masquerading, that is, one entity pretending to be a another entity. This might occur 
for three kinds of entity: 

(a) A user might pretend to be another either to a local MobilePC, or a remote user 
and MobilePC. 

(b) An object A sending a message to another object B might pretend that it is object 
C. 

(c) A remote machine which is not a MobilePC might masquerade as a MobilePC. or 
an Object Manager might pretend to be another. 

To counteract masquerading, we need the following. 

(a) A user authentication mechanism. (The MobilePC authenticates the user when 
he or she uses (logs into) the MobilePC.) 

(b) OM trust. The local OM which is responsible for identifying the source of a 
message. 

(c) An OM to OM authentication mechanism. 

2. Unauthorized access to an object. 

In order to address this threat, we need to know how various kinds of access to objects 
are described, and how rights are then defined. For instance, in the case of the former, 
access may be described in terms of common affects of a message on an object, such 
as read, write, move and so on, or can be described directly in terms of message types. 
For the latter, rights may be given to users, to calling objects, or to objects acting 
for a user. Furthermore, we may need the notion of delegation whereby one object is 
acting on behalf of another. 

It must be stressed that not all access control schemes can be implemented on an 
arbritrary base. For an unprotected OM, it makes sense only to specify rights for 
users. This is under the control of the user (owner) of the MobilePC. 

3. An entity may try to "hijack" a communication session between two other objects 
once it has been established. 

It will be seen below that for a protected OM, this threat is addressed through correct 
implementation of the object, while for the unprotected OM, this threat is subsumed 
in a larger threat, whereby the object model is not enforced. 

615 



4. Message modification. 

Here, a message in transit (between MobilePCs) is modified thereby affecting the 
received contents of the message or the apparent origin of the message. 

This threat may arise from the communications medium or from within a MobilePC 
itself. It may be felt that the former case is relatively unlikely: below, we propose 
message authenticity services which may be included in MobilePC, but would be 
optional services for use between communicating pairs of objects. 

For the latter case, the threat is addressed by enforcing the object model. Thus, for 
an unprotected OM, this cannot be achieved. 

5. Message eavesdropping. 

The same comments apply for secrecy as for authenticity, above. 

In considering the security services for MobilePCs, one can have two cases : an unprotected 
OM and a protected OM. 

By unprotected OM, we mean that a user of the MobilePC is able to access the represen- 
tation of objects underneath the OM or at the resources of the OM itself. So in this case, 
the user of the MobilePC has complete control over the OM's behaviour. Hence the only 
security services that one can provide here are based on those specified by the user of the 
MobilePC himself. As MobilePC is a single user machine (single "owner"), these security 
services can be used to protect the user ("owner") from other users. 

1. Authentication of the local user to the MobilePC. 

2. Authentication of the remote user to the MobilePC. 

3. User-based access control. 

In the case of the protected OM, we can make the following trust assumptions : 

• It is not possible for the user of the MobilePC to be able to access the representation 
of the object underneath the OM or at the resources of the OM itself. 

• The OM is trusted to accurately convey the requests of objects that it is managing. 

• Information stored in the OM is trusted to be secure and the OM is trusted to manage 
the information that it holds. 

• The OM is trusted correctly to identify the sending object. 

The security services that can be provided in this case include the following : 

1. Authentication of the local user to the MobilePC. 

2. OM - OM authentication. 

3. Object-based access control. 

Additional Services which are required include : 

4. Message authenticity and integrity, against wire-tapping. 

5. Message confidentiality, against wire-tapping. 

616 



4.3    Incorporation of Security in MobilePC in Stages 

In practice, one might consider the incorporation of security services in MobilePC in sev- 
eral stages, depending upon the relative importance of the perceived threats. One such 
possibility is as follows : 

• Stage 1 
Unprotected OM - All three security services and a simple message integrity service. 

• Stage 2 
Protected OM - All three security services and a simple message integrity service. 

• Stage 3 
Protected OM - All three security services and the additional security services. 

From security point of view, Stage 3 is the best option. 

5     Summary 

In this paper, we have outbned a security reference model for a distributed environment. 
We considered the type of security threats and attacks faced in such an environment, and 
the types of security services and security mechanisms, and the management functions that 
are required to counteract these threats. Then we described an "instantiation" of the the 
security model to a simple distributed object environment. In particular, we looked at how 
the required security services and mechanisms can be provided, how they interact, and the 
trust dependencies involved. Finally, we concluded the paper by briefly looking at a specific 
practical system where such a model can be applied. 

References 

[1] Department of Defense, Department of Defense Trusted Computer System Evaluation 
Criteria, DoD 5200.28-STD, Dec.1985. 

[2] National Computer Security Centre, Trusted Network Interpretation of the Trusted 
Computer System Evaluation Criteria, NCSC-TG-005, Vers.l, July 1987. 

[3] International Organization for Standardization (ISO), ISO 7498 : Part 2 - Information 
Processing Systems - Open System Interconnection - Basic Reference Model - Security 
Architecture, 1988. 

[4] International Organization for Standardization (ISO), ISO 7498 : Information Process- 
ing Systems - Open System Interconnection - Basic Reference Model, 1984. 

[5] International Organization for Standardization (ISO), ISO/IEC JTC 1/SC 21/WGl : 
Security Framework Overview, Working Draft, 1991. 

[6] International Organization for Standardization (ISO), ISO/IEC JTC 1/SC 21/WGl : 
Authentication Framework, Draft International Standard DIS 10181-1, 1991. 

617 



[7] International Organization for Standardization (ISO), ISO/IEC JTC 1/SC 21/WGl : 
Access Control Framework, Working Draft, 1991. 

[8] C.C.I.T.T, X.509 - The Directory : Authentication Framework, 1989. 

[9] C.C.I.T.T, X.500 - The Directory : Overview of Concepts, 1989. 

101 European Computer Manufacturers' Association (ECMA), Security in Open Systems 
- A Security Framework, Technical Report ECMA TR/46. 

Ill European Computer Manufacturers' Association (ECMA), Security in Open Systems 
- Data Elements and Service Definitions, ECMA 138. 

12l European Computer Manufacturers' Association (ECMA), Authentication and Privi- 
lege Attribute Security Application, Working Draft 1991. 

131 R.Rivest, A.Shamir and L.Adleman, A method for obtaining digital signatures and 
public-key cryptosystems, Communications of the ACM, Vol.21, No.2, pp 120-126. 

14l M.Gasser, A.Goldstein, C.Kaufman, B.Lampson, The Digital distributed security ar- 
chitecture, Proc. of the 12th National Computer Security Conference, 1989. 

151 Vijfy Varadharajan, Stewart Black, A Multilevel Security Model for a Distributed 
01 ct-Oriented System", Proceedings of the IEEE Sixth Annual Computer Security 
Applications Conference, USA, Dec.1990. 

161 Vijay Varadharajan, Phillip Allen, Stewart Black, An Analysis of the Proxy Problem 
in Distributed Systems, Proc. of the 1991 IEEE Symposium on Research in Security 
and Privacy, 1991. 

1 Vijay Varadharajan, A Security Architectural Framework for a Distributed Environ- 
ment, Proc. of the International Computer Security Conference, COMPSEC'91, Lon- 
don, Oct.1991. 

181 NBS FIPS PUB 46, Data Encryption Standard, U.S. Department of Commerce, Na- 
tional Bureau of Standards, 1980. 

1 NBS FIPS PUB 81, DES Modes of Operation, U.S. Department of Commerce, National 
Bureau of Standards, 1980. 

1 D.E.BeU and L.J.LaPadula, Secure Computer Systems, ESD-TR-73-278 (Vol.I-III), 
Mitre Corporation, Bedford, MA, April 1974. 

211 European Commission, Information Technology Security Evaluation Criteria (ITSEC), 
Vers.1.1, Mar.1991.. 

1 IEEE, 802.10 : Standard for Interoperable Local Area Network Security (SILS) : Part 
A - The Model, 1989, and Part B - Secure Data Exchange, 1990 

231 J.Kohl, B.C,Neumann, J.Steiner, Kerberos, Vesrion 5, Draft RFC, Project Athena, 
MIT, Dec.1990. 

241 Charles Kaufman, DASS : Distributed Authentication Security Service, Network Work- 
ing Group, Internet Draft, 1991. 

618 



[25] C.C.I.T.T, X.435 - Recommendations for security in X.400. 1988. 

[26] C.C.I.T.T, SGVII Distributed Applications Framework Security Infrastructure Docu- 
ment, Draft, Nov.1990. 

[27] International Organization for Standardization (ISO), ISO/IEC JTC 1/SC 21/WG6 : 
OSI Upper Layers Security Model, Draft (CD), 1991. 

[28] International Organization for Standardization (ISO), ISO/IEC JTC 1/SC 21/WG : 
OSI Lower Layers Security Model, Draft, 1991. 

[29] Open Software Foundation, Distributed Computing Environment Overview, 1990. 

619 



SECURITY WITHIN THE DODIIS REFERENCE MODEL 

Brian W. McKenney 

The MITRE Corporation, 7525 Colshire Drive, McLean, VA 22102-3481 

ABSTRACT 

The Defense Intelligence Agency (DIA) has developed an information system framework that is intended to provide a 
foundation for the development of architectures and implementation/transition plans, and the selection of standards 
and products that will meet the goals and objectives of the Department of Defense (DOD) Intelligence Information 
System (DODIIS) community. The DODIIS Reference Model (DRM) will be used by DODIIS planners and 
engineers responsible for the procurement of hardware and software associated with the upgrade of existing 
intelligence capabilities and the implementation of new capabilities at DODIIS sites. Security is an essential 
element of the DRM. This paper1 provides a snapshot of a current task associated with updating the security- 
relevant portions of the DRM, presents a brief overview of the DRM, and discusses security for specific service areas 
defined in the model. Since the model is based on standards, this paper also identifies current and emerging DODIIS 
security standards for specific service areas of the DRM. 

1.0       INTRODUCTION 

As the DODIIS community faces declining budgets, the community will be forced to reduce duplicative system 
developments and life-cycle maintenance requirements to achieve cost savings. The DODIIS community must strive 
to integrate as much commercial off-the-shelf (COTS) software as possible to reduce the software development and 
operations and maintenance (O&M) costs. The community must also increase resource sharing, evolve toward "open 
systems," and develop common capabilities. In order for these strategic objectives to succeed, the DODIIS 
community must have a consistent standards-based architecture across the community. 

The DIA has developed an information system framework [1] that is intended to provide a foundation for the 
development of architectures and implementation/transition plans, and the selection of standards and products that 
will meet the goals and objectives of the DODIIS community. DODIIS is "the aggregation of DOD personnel, 
procedures, equipment, computer programs, and supporting communications that support the timely and 
comprehensive preparation and presentation of intelligence and intelligence information to military commanders and 
national-level decision makers" [2]. The framework, promulgated by the DODIIS Management Board (DMB), 
provides a basis for selecting open system standards. The DMB, composed of senior DODIIS managers from DIA 
and the military components, is responsible for developing and implementing DODIIS policy and procedures. The 
DODIIS Reference Model for the 1990s [3], a companion document to the framework, describes the current and 
future standards that have been selected for DODIIS. The DRM will be used by DODIIS planners and engineers 
responsible for the procurement of hardware and software upgrades for existing intelligence capabilities and the 
implementation of new capabilities at DODIIS sites. Major goals of the DRM are to forge a consensus on the 
definition of an architectural model and to establish a common vocabulary and "information technology roadmap" 
within the DODIIS community. When applied, the DRM will help to promote interoperability and portability 
between DODIIS programs and applications, and reduce resources through the use of common, interoperable, and 
shared services. 

Security is an essential element of the DRM. This paper provides a snapshot of a current task associated with 
updating the security-relevant portions of the DRM, presents a brief overview of the DRM, and discusses security for 
specific service areas defined in the model. Since the model is based on standards, this paper also identifies current 
and emerging DODIIS security standards for specific service areas of the DRM. 

This paper was supported by DIA under contract DAAB07-91-C-N751. The publication of this paper does not indicate 
endorsement by DIA or The MITRE Corporation, nor should the contents be construed as reflecting the official 
position of these organizations. 

620 



1.1 ADDITIONAL  REFERENCE  MODEL   DEVELOPMENTS 

The National Institute of Standards and Technology (NIST) is responsible for promulgating Federal Information 
Processing Standard (FIPS) Publications (PUBS). A recent NIST publication is the Application Portability Profile 
(APP) - The U.S. Government's Open System Environment Profile [4]. The APP is intended to be the United 
States (U.S.) Government's Open System Environment profile. An Open System Environment (OSE) encompasses 
the functionality needed to promote interoperability, portability, and scalability of computerized applications across 
heterogeneous information technology platforms. An OSE extends the Open Systems Interconnection (OSI) concept 
[5] to the broader problems of application portability and interoperability. NIST has promulgated the APP in an 
attempt to integrate standards and to assist Government agencies in making informed acquisition choices regarding 
the selection and use of OSE specifications. The APP is a guideline directed toward managers and project leaders 
with responsibilities for procuring, developing, and operating information systems that support heterogeneous 
application platforms. As a result, the APP should not be regarded as a standard since the APP is not designed to 
cover all information system environments or meet all user requirements and needs. 

The DRM is based on the NIST APP, and a goal of DODHS is to conform to the NIST recommendations where 
possible. Like the NIST APP, the DRM is a guidance document. The DRM applies to upgrades of any DODHS 
site hardware and software. An upgrade ranges from selective upgrades of subsets of a system at a site to a complete 
change of a system at a site. 

The Center for Information Management of the Defense Information Systems Agency (DIS A) has also developed a 
technical reference model that defines a target framework and profile of standards. The Technical Reference Model for 
Information Management [6] provides technical guidance to DOD components for the acquisition, development, and 
support of DOD information systems and associated infrastructure systems. Much of the information within the 
Technical Reference Model (TRM) is derived from the NIST APP and the DRM. Version 2.0 of the TRM, 
scheduled to be published in late 1992, will address the services and standards needed to support DOD's distributed 
computing requirements. Other areas to be addressed in future editions of the TRM include services and standards for 
tactical systems, imagery, and multimedia data transfer. 

The Institute of Electrical and Electronics Engineers (IEEE) is currently drafting a Portable Operating System 
Interface for Computer Environments (POSIX) OSE guide that maps existing and emerging standards onto the 
general requirements of a complete information system. The guide is a product of the IEEE POSIX standardization 
effort, although its scope is much broader than the LEEE POSIX standardization efforts. The POSIX OSE Guide [7] 
will present a framework that identifies key information system interfaces involved in application portability and 
system interoperability, and will describe the services offered across these interfaces. In addition, the guide will 
consist of a reference model, service definitions, standards, and profiles. It is expected that future versions of the 
NIST APP, DRM, and the TRM will align with the POSIX OSE guide. 

1.2 DRM   STANDARDS   AND   SELECTION   CRITERIA 

The DRM is based on standards and is evolutionary in nature since not all of the needed standards (e.g., security 
standards) have been developed. The model does not mandate a specific system design, but is instead a set of 
standards and guidelines to be applied to all DODHS programs and site architectures. 

Standards are organized within the DRM into three categories: (1) formal/government standards, (2) de facto industry 
standards, and (3) other standards. Formal/government standards are designated by standards-setting or standards- 
approving bodies such as the International Organization for Standardization (ISO), American National Standards 
Institute (ANSI), IEEE, and NIST. Military Standards (MDL-STDs) also fit in this category. De facto industry 
standards are specifications or products that have achieved a high degree of acceptance within industry and have been 
implemented in numerous commercial products. Examples of de facto standards include Sun Microsystems Network 
File System (NFS) and the Massachusetts Institute of Technology (MIT) X Window System. The other standards 
are specifications, products, or program-related products that do not fit in the other categories of standards. Many of 
these standards are unique to the DODHS community. Examples include the DODHS Network Security for 
Information Exchange (DNSIX) and the Compartmented Mode Workstation (CMW). 

621 



Criteria for the selection of standards, products, and systems for DODIIS, currently section 3 of the DRM, will be 
enhanced and released as a companion document to the DRM. These criteria are intended to be used as part of a 
consistent approach to selecting standards, products, and systems. Criteria to be used to select standards include 
functionality/completeness, compatibility with other standards, maturity/stability, product availability, and 
supportability. 

1.3        nODIIS   DOCUMENTATION  TREE 

The DODIIS Document Management Plan [8] specifies the documents required to provide technical guidance to 
DODIIS sites for achieving an open systems environment. After the DODIIS Framework and DRM were adopted by 
the DODIIS community, it became apparent that a series of documents was needed to be developed that defined the 
future direction for DODIIS and to provide guidance to DODIIS sites and organizations supporting DODIIS. Most 
of the documents will establish overall DODIIS policy, procedures, or architectural guidance. The collection of 
documents is referred to as the "DODIIS Documentation Tree" and includes compliance documents, guidance 
documents, and DODIIS site documents. The DODIIS site documents must be produced by each DODIIS site to 
achieve the open system environment envisioned by the DRM. 

2.0       DODIIS  REFERENCE  MODEL 

Figure 1 illustrates the DRM and is a top-level representation of the components of an information system. The 
model is based on the NIST APR OSE Reference Model. The principles behind the DODIIS model are as follows: 

Software services are independent of hardware. 
All services interact with the operating system. 
Distributed client-server requirements will be accommodated through interactions between other service 
areas and network services. 
Security services are integrated within each service area. 
System management and security apply to all aspects of the information system. 

The model consists of eleven major components in which each of the services are further defined by layered sets of 
functions. Although not illustrated within the model, an overall system security policy governs all of the 
components of the information system. A system security policy defines what it means for an information system 
to be "secure" and provides significant input to the design of a secure information system. 

INFORMATION 
ARCHITECTURE 

APPLICATIONS 
ARCHITECTURE 

I HARDWARE 
PLATFORM 

System Management      ,   Security 

Structured 
Data 

Free-Format 
M 

I Graphic* 

Indications end 
Warnings 

\ Requirements 

| Management 

Imagery 

Imagery 
Analysis 

Voice Video 

Target 

Analysis 
Current 

Intelligence 

] 

SDE 

T Office 
Automation 

User Interface 
Services 

E-Mail Text 
Processing 

Map   Graphics 

Object 
Management 

Services 

Image   Processing 

Object 
Manipulation 

Services 

Object 
Interchange Services 

Network 
Services 

Operating System Services 

Workstations Servers 
-r 

Malnframes Network 

SDE- Sottwf D*vlopm»ntEnvironment 
• m Exmpfei Only. NotAI Indunn 

Figure 1.    DODIIS Reference Model 

622 



Security services are integrated within each service area. A security service is a service that satisfies a security policy 
or specific security requirement. Security services associated with one of the service areas may depend on security 
services offered by a different service area. For example, data management security services (associated with object 
management services) may depend on operating system security services. A security mechanism is used to 
implement a single security service or a set of security services. For example, access control lists (ACLs) is one 
security mechanism that can be employed to implement access control within an operating system. Encipherment is 
an example of a security mechanism that can be used to implement a set of network security services (e.g., data 
confidentiality, data integrity, and authentication). 

3.0        DRM   SECURITY   SERVICES   AND   STANDARDS 

Currently, DODIIS standards for security can be recommended in operating system services, network services, user 
interface services, object management services, object interchange services, and system management services. A 
discussion of the applicable security services for these specific service areas, along with associated DODIIS security 
standards (where they exist), is provided in the following sections. Although security services and support 
mechanisms are associated with hardware platforms (e.g., TEMPEST, physical security, domain isolation), this 
paper will not address security-related services and standards associated with hardware platforms. 

3.1        OPERATING   SYSTEM   SERVICES 

Operating system services include the low-level services that manage hardware resources and the high-level software 
mechanisms that facilitate user and application interaction with the hardware and operating system. Operating 
system services include process and task management services, file-oriented services, kernel operations, commands 
and utilities, memory management services, and operating system security services. 

3.1.1 Applicable   Security   Services 

Operating system security services are specified in terms of controlling the access of subjects, or processes acting on 
their behalf, to data, functions, hardware, and software resources of a system. Access control policies include 
discretionary access control (DAC) and mandatory access control (MAC). In addition to access control, other security 
services include individual user identification and authentication (I&A), data confidentiality, integrity (e.g., system 
integrity. Trusted Computing Base (TCB) integrity, label integrity, data integrity), security audit, object reuse, and 
availability of service and data. 

3.1.2 DOnilS  Security  Standards 

The following documents have been selected as the DODIIS security standards for operating systems: Department of 
Defense Trusted Computer System Evaluation Criteria (TCSEC), DOD 5200.28-STD [9]; Security Requirements for 
System High and Compartmented Mode Workstations (CMWREQs), DDS-2600-5502-87 [10]; and the 
Compartmented Mode Workstation Evaluation Criteria, Version 1 (Final) (CMWEC), DDS-2600-6243-91 [11]. 
The IEEE Portable Operating System for Computer Environments (POS1X) - Security Interface (POSIX.6) [12], 
when released as an IEEE standard, will be adopted as a DODIIS standard. Additional standards that are being 
monitored for potential inclusion within the DODIIS Reference Model are the Federal Criteria standards currently 
being developed by NIST and the National Security Agency (NSA). 

The TCSEC or "Orange Book," a DOD standard, is hierarchically ordered into a series of evaluation classes in which 
each class embodies an increasing degree of computer security protection and assurance. The CMWREQs identifies 
minimum security requirements for system high and compartmented mode workstations. The technical 
compartmented mode requirements defined within the CMWREQs have since been superseded by the CMWEC. The 
CMWEC provides an interpretation of the compartmented mode requirements defined within the CMWREQs in 
terms of the TCSEC. The CMWEC, along with the TCSEC, will form the basis upon which DIA and the National 
Computer Security Center (NCSC) will carry out future joint CMW product evaluations. The IEEE POSIX.6 
standard will define a standard interface and environment for computer systems that require a secure environment and 
is intended for system implementors and application software developers. POSIX.6 defines five independent, 
optional security mechanisms that will become integrated into the POSIX System Application Program Interface 
(API) standard [13]. These mechanisms are ACLs, security auditing, least privilege, MAC, and information 
labeling. 

623 



NIST and NS A have entered into a joint project to develop a series of FTPS PUBS specifying new Federal Criteria 
(FC) for trusted systems. These FIPS PUBS are collectively being called the "Federal Criteria FIPS" (FC-FIPS). 
The first set of FIPS will be an enhancement and modernization of the current TCSEC coupled with an expansion of 
the existing product evaluation process. Version 1 of the FC, targeted for completion as a draft by fall 1992, is 
intended as an evolutionary modernization of the existing TCSEC. The Minimum Security Functional 
Requirements for Multi-User Operating Systems [14] will be used as input within the FC development process. 
Version 1 and its supporting documents will form the foundation for new system security criteria as a first step. 
DIA plans to include the FC-FIPS as DODIIS standards once they are published. 

3.2       NETWORK   SERVICES 

Network services provide support to distributed applications requiring data access and applications interoperability in 
networked environments. Network services include data communications, transparent file access, distributed 
computing services, network management services, and network security services. 

3.2.1 Applicable   Security   Services 

The network security services are those defined in ISO 7498-2- 1988(E) [15]. This document provides a general 
description of security services and related mechanisms, which may be provided by the OSI Basic Reference Model, 
and defines the positions within the OSI Basic Reference Model where the security services and mechanisms may be 
provided. The security services defined are authentication, access control, data confidentiality, data integrity, and non- 
repudiation. ISO 7498-2 also identifies pervasive security mechanisms that are not specific to any particular security 
service. These mechanisms include trusted functionality, security labels, event detection, security audit trail, and 
security recovery. 

3.2.2 DOnilS  Security  Standards 

The near-term DODIIS standards for secure networking are associated with the DOD internet protocol suite, whereas 
the long-term objective for DODIIS is to employ the security protocols defined within the Government OSI Profile 
(GOSIP). GOSIP is the U.S. Government specification for implementing international standards based on the 
seven-layer OSI model. The DOD internet protocol suite is the focus of the DRM since the Transmission Control 
Protocol/Internet Protocol (TCP/IP) protocol suite is currently the installed base of the DODIIS community. The 
DODIIS community plans to transition to GOSIP as OSI-based COTS products become widely available. The 
following sections discuss the DODIIS standards and related developments for network security. 

3.2.2.1 DNSIX 

The near-term security requirements for DODIIS networking were defined by DIA in the 1986 publication DODIIS 
Network Security Architecture and DODIIS Network Security for Information Exchange (DNSIX) [16]. This 
document includes requirements based on DIA Manual (DIAM) 50-4, extensions to those requirements for 
networking (particularly for the DODIIS hosts), and additional network-specific requirements. Many of those 
security requirements will be met in DODIIS by software that will be added to the DODIIS hosts or to their network 
interface devices. This software is called DNSIX. DNSIX consists of several modules to allow for compartmented 
mode and system high hosts to exchange information over a network. Since this publication, additional documents 
have been developed that extend DNSIX for use in local area networks (LANs). These documents are the DNSIX 
Interface Specifications, Version 2.1 [17] and the DNSIX Detailed Design Specification, Version 2.1 [18]. 

3.2.2.2 Internet Engineering Task  Fnrce  flETF^ 

The IETF is a task force of the Internet Engineering Steering Group (IESG), a group that reports to the Internet 
Architecture Board (IAB). The IETF has a number of security-related working groups which are coordinated by the 
Security Area Advisory Group (SAAG). The working groups include the Commercial IP Security Option (CIPSO) 
working group, the Common Authentication Technology (CAT) working group, and the Privacy-Enhanced 
Electronic Mail (PEM) working group. Recent Request for Comments (RFCs) that have been published include 
RFC 1108 [19], RFC 1244 [20], and RFC 1281 [21]. Future Internet standards resulting from the IETF security 
working groups are being monitored for potential inclusion within the DRM. 

624 



3.2.2.3 Defense   Message   System   (QMS) 

The DMS has a target architecture that integrates the Automatic Digital Network (AUTODIN) and the Defense Data 
Network (DDN), uses International Telegraph and Telephone Consultative Committee (CCITT) X.400 message 
handling and CCITT X.500 directory services, and provides writer-to-reader security within the Secure Data Network 
System (SDNS) developed by NSA [22]. The DMS transition strategy is evolutionary and is in three phases, 
designed to transform DOD messaging from the 1989 baseline to the 2008 target architecture. DMS is transit ion in g 
to an architecture that employs GOSIP protocols and plans to use COTS products or products using non- 
developmental item (NDI) technology whenever possible. DIA is an active participant within DMS and plans to 
transition to the DMS target architecture for message handling to ensure interoperability. 

3.2.2.4 GOSIP  Security   Protocols 

The long-term security requirements for DODIIS networking will be provided by security protocols defined within 
GOSIP. In particular, security protocols developed within the SDNS program [23] are targeted for the DODIIS 
community. The SDNS program, a joint program of the U.S. Government and computer industry representatives, 
has developed OSI security protocol specifications for data networking. The SDNS protocols defined are the Security 
Protocol at Layer 3 (SP3), the Security Protocol at Layer 4 (SP4), the Message Security Protocol (MSP), and the 
Key Management Protocol (KMP) [24]. The SP3 and SP4 specifications are in the process of becoming ISO 
standards and are referred to as the Network Layer Security Protocol (NLSP) and Transport Layer Security Protocol 
(TLSP), respectively. MSP will be initially applied within DMS to provide message handling security services. 

An additional standard being monitored includes the Standard for Interoperable LAN Security (SILS) (IEEE 802.10) 
[25]. SILS will provide a standard protocol for protecting LAN traffic and will also specify methods of key 
management and system/security management with supporting protocols. 

3.2.2.5 DODIIS  Evolutionary  Path  for Network  Security 

After considering the advances made by industry in developing secure networking standards, DIA believes that 
industry has taken initiatives to define and develop capabilities that exceed the DNSIX specifications. Consequently, 
DIA's policy with regard to the development of compartmented mode networking via DNSIX has changed, though 
interoperability with the present DNSIX 2.1 specifications will continue to be a minimum requirement. The 
compartmented mode networking policy is shifting to allow DIA and the DODIIS community to take advantage of 
the emerging technical security standards in industry. DIA and DODIIS members are participating in industry 
forums to ensure that the government's functional requirements for network security are included in emerging 
standards. Two prominent industry forums are the Trusted Systems Interoperability Group (TSIG) and the Project 
MAX consortium. TSIG and Project MAX memberships have substantial overlap, and Project MAX continues to 
be influenced by TSIG (and vice-versa). The TSIG is an industry-sponsored group working toward interoperability 
standards of CMWs and B-level trusted products. Project MAX was formed to fund an actual implementation of 
trusted networking technology, known as MaxSix. By encouraging industry in these efforts, the government should 
be able to purchase interoperable network security software as COTS products. 

DODIIS will evolve over time to rely upon COTS products for network security. An evolutionary strategy has been 
developed to provide guidance to the community. The evolutionary path that DODIIS intends to pursue is listed 
below: 

Develop a baseline DNSIX, Version 2.1 through DMB action.  This event occurred with the formal 
publication of the DNSIX Version 2.1 specifications, dated October 1991. 
Adopt MaxSix as DNSIX 3.0, provided suitable MaxSix interface specifications are available in the 
public domain and that MaxSix maintains interoperability with DNSIX Version 2.1. 
Work with the TSIG and Project MAX Consortium to develop and sponsor a "public domain" 
commercial set of trusted network security interface standards, with DNSIX functionality and 
interoperability as a required subset. The standards will include trusted sessions, Trusted Network File 
System (TNFS) [26], and a trusted implementation of the X Window System for user interface services. 
Move toward adopting the resulting standards as DNSIX 4.0 in 1993-1994 timeframe. 
Plan to transition to GOSIP security protocols as they become standards and are available as COTS 
products. 

625 



3.3 USER   INTERFACE   SERVICES 

User interface services define how users interact with an application. User interface services include client-server 
operations, window object definition and management, presentation management, window management, dialogue 
support, and user interface security services. 

3.3.1 Applicable  Security  Services 

User interface security services include the definition and execution of types of user access to objects within the 
purview of user interface systems, such as access to windows, menus, icons, and the display of security labels. 

3.3.2 nODHS  Security  Standards 

The Department of Defense Intelligence Information System Systems Style Guide [27] and the Compartmented 
Mode Workstation Labeling: Source Code and User Interface Guidelines, DDS-2600-6215-91 [28] are the DODIIS 
standards for user interface security services. These documents address the security portion of the user system 
interface (USI) and are intended for programmers who are developing applications for CMWs. 

Appendix B of the DODIIS Style Guide seeks to provide a uniform and consistent USI across all CMW applications 
within the DODIIS community. DDS-2600-6215-91 describes a demonstration program that includes a user 
interface for setting and changing information labels, sensitivity labels, and clearances. Also included are DIA 
guidelines for implementing such user interfaces. Additional guidance on the usage of the DIA labeling software can 
be found in Appendix E of DDS-2600-6243-91 (the CMWEC). 

3.4 OBJECT MANAGEMENT  SERVICES 

Object management services deal with the management of structured data, alphanumeric text, imagery, graphics, and 
other media, such as voice and video. Object management services include data dictionary/directory services, database 
management system (DBMS) services, data access services, distributed data services, and data management security 
services. 

3.4.1 Applicable   Security   Services 

Object management security services are not completely defined for all of the types of objects (e.g., imagery, 
graphics) within this service area. Secure voice capabilities and programs are available across the DOD [29]. The 
data management security services defined are those associated with a DBMS. Data management security services 
include access control (DAC, MAC, content-dependent and context-dependent access control), individual user I&A, 
data confidentiality, data integrity (e.g., domain integrity, entity integrity, referential integrity, label integrity), 
security audit, object reuse, and availability of service and data. 

3.4.2 DODIIS Security Standards 

Very few standards address data management security services, although standards bodies are in the process of 
developing standards. These standards bodies include ANSI X3H2 and ANSI X3H7, both technical committees of 
ANSI SPARC. ANSI X3H2 is active with developing Structured Query Language (SQL) security extensions 
whereas X3H7 (formerly the Object-Oriented Data Base Task Group), plans to address security within Object Data 
Management. The Database Management Security and Privacy Task Group (DMSPTG), an ANSI SPARC study 
group, is developing a reference model that will provide a framework for security/privacy for data management [30]. 

The NCSC Trusted Database Management System Interpretation of the Trusted Computer System Evaluation 
Criteria (TDI) [31], released in April 1991, extends the evaluation classes of the TCSEC to trusted applications in 
general, and to DBMSs in particular. The TDI provides guidance for the design, implementation, and evaluation of 
trusted DBMSs. The TDI should be regarded as an interim standard since this NCSC publication interprets the 
TCSEC for database systems. In addition, several trusted DBMS products are being evaluated against this TCSEC 
interpretation. 

626 



3.5 OBJECT   INTERCHANGE   SERVICES 

Object interchange services provide specialized support for the interchange of text, imagery, graphics, and multimedia 
between applications (either on the same or different platforms) primarily through the specification of encodings or 
data structures. Object interchange services include product data interchange services and object interchange security 
services. 

3.5.1 Annlicahle   Security   Services 

Object interchange security services are used to verify and validate the integrity of specific types of data interchange. 
Examples of such security services include non-repudiation, authentication, data integrity, and access control. Object 
interchange security services will depend on network security services. 

3.5.2 nODIIS  Security  Standards 

The DODIIS standards defined for object interchange security services are closely coupled with those defined within 
network security services. Future security standards to be adopted for this service area include the NIST Digital 
Signature Standard (DSS) [32] [33], the Open Document Architecture and Interchange Format (ODA/ODIF) security 
extensions, and the CCiTT Electronic Data Interchange (EDI) security extensions. The NIST DSS, currently under 
review as a proposed FIPS, will specify a digital signature algorithm that can be used to generate a digital signature. 
Digital signatures are used to detect unauthorized modifications to data and to authenticate the identity of the user 
who generates the signature. The purpose of the ODA/ODIF standard is to facilitate the interchange of documents. 
Both the European Computer Manufacturers Association (ECMA) and the ISO are developing ODA security 
extensions [34]. Security is also an active issue in several other specific OSI applications such as the EDI 
extensions to CCITT X.400 [35]. 

Additional standards address security formats. DODIIS standards include the DNS IX Network Audit Trail (NAT) 
format, the DNSIX Network Level Module (NLM) label format, and the CMW label encodings format as defined in 
DDS-2600-6216-91) [36]. Future standards to be adopted include the POSK.6 audit trail record format [12] and the 
GOSIP security label format [37] [38]. 

3.6 SYSTEM   MANAGEMENT   SERVICES 

System management services are required in the DRM to provide a means for monitoring and controlling the various 
components of the information system architecture. OSI system management standards have been partitioned into 
five Specific Management Functional Areas (SMFAs). The five SMFAs are configuration management, fault 
management, performance management, accounting management, and security management. These SMFAs have 
overlapping requirements, and management information and functions applicable to one SMFA are often applicable 
to another SMFA. Security services and standards are those associated with security management. 

3.6.1 Applicable   Security   Services 

Security management, an integral part of system management, is concerned with the management of security 
services and mechanisms. Included within security management is overall security policy management. A security 
policy is enforced across all of the components of the DRM. Security management services include system security 
management, security service management, and security mechanism management. Security mechanism management 
functions include maintaining sensitivity labels (e.g., operating system, router), managing user clearance levels, 
performing audit administration, maintaining security databases (e.g., password files, MaxSix databases), and 
distributing cryptographic keys.. 

3.6.2 DODIIS  Security  Standards 

DODIIS standards for security management include the security services provided by SNMP and the services that will 
be defined in the Government Network Management Profile (GNMP) [39]. SNMP security extensions have been 
defined by the IETF. The GNMP will be the standard reference for all Federal Government agencies to use when 
acquiring network management functions and services. With respect to security, the GNMP will identify security 
options, management security services, and management security standards activities. 

627 



The audit trail function is an element of security management. As a result, the DNSIX network audit trail is 
included as a standard in this service area. An Internet draft under consideration is the Security Information Transfer 
Protocol (SITP) [40]. SITP is being proposed as a standard for the transfer of audit data across TCP/IP networks. 

Additional standards being monitored for potential inclusion within the DRM are those associated with the work 
items of ISO SC21 Working Group #4. This particular working group is developing standards in the areas of alarm 
reporting, security alarm reporting, and the security audit trail function [41]. 

4.0        SUMMARY 

The DODIIS community is striving toward a uniform standards-based architecture. The DRM provides a foundation 
for the development of architectures and implementation/transition plans, and the selection of products that will meet 
the goals and objectives of the DODIIS community. When applied, the DRM will serve to maximize 
interoperability and portability among DODIIS programs and applications, and reduce costs through the use of 
common services. The DRM is not a specific system design, but a set of standards and guidelines that can be 
applied to DODIIS programs and site architectures. The DRM is also evolutionary, since not all of the needed 
standards (e.g., security standards) have emerged. 

Security is an essential element of the DRM. While DODIIS recognizes that security is integrated within each of 
the DRM components, security requirements and standards for several of the components (e.g., Object Management 
Services) have not been formally defined. The DRM security enhancements and revisions are targeted for FY92. 
This paper provided a snapshot of this activity, especially with the identification of the applicable security services 
and associated security standards for specific service areas of the DRM. The DRM is expected to continue to provide 
guidance and direction to DODIIS planners and engineers for the development of site security architectures. 

ACKNOWLEDGMENTS 

The author wishes to thank Walt Jablonski, DIA/DS-SIM, for his direction and encouragement during the 
development of this paper. The author also thanks Robert Brown, Les Fraim, Tom Gregg, Patty Guay, Gary Huber, 
Dr. Albert Jeng, Carol Oakes, Mindy Rudell, and Lorrayne Schaefer of The MITRE Corporation for their helpful 
comments and insights on the technical material in prior drafts of this paper. 

REFERENCES 

1. DIA, A Framework for Evolution of the Department of Defense Intelligence Information System (DODIIS), 
July 1991. 

2. Joint Chiefs of Staff (JCS), Department of Defense Dictionary of Military and Associated Terms, Joint 
Publication 102 (Formerly JCS PUB 1), 1 December 1989. 

3. DIA, DODIIS Reference Model for the 1990s, 18 October 1991. 

4. NIST, Application Portability Profile (APP), The U.S. Government's Open System Environment Profile, 
OSEI1 Version 1.0, NIST Special Publication 500-187, April 1991. 

5. ISO, Information Processing Systems - Open Systems Interconnection - Basic Reference Model, International 
Standard 7498,1984. 

6. DISA, Center for Information Management, Technical Reference Model for Information Management, Version 
1.2, 15 May 1992. 

7. IEEE, Draft Guide to the POSIX Open Systems Environment, P1003.0 Draft 14, November 1991. 

8. DIA, DODIIS Documentation Management Plan, 21 November 1991. 

9. DOD, Department of Defense Trusted Computer System Evaluation Criteria ["Orange Book"], DOD 5200.28- 
STD, December 1985. 

628 



10. DIA, Security Requirements for System High and Compartmented Mode Workstations, DDS-2600-5502-87, 
November 1987. 

11. DIA, Compartmented Mode Workstation Evaluation Criteria, Version 1 (Final), DDS-2600-6243-91, November 
1991. 

12. IEEE, Draft Standard for Information Technology - Portable Operating System Interface (POSIX) - Security 
Interface, P1003.6 Draft 12, ISO/IEC JTC 1/SC22/WG15 N046R1, September 1991. 

13. ISO, Information Technology - Portable Operating System Interface (POSIX) - Part 1: System Application 
Program Interface (API), ISO/IEC 9945-1,1990. 

14. NIST, Minimum Security Functional Requirements for Multi-User Operating Systems, Issue 1,27 January 
1992. 

15. ISO, Information Processing Systems- Open Systems Interconnection - Basic Reference Model - Part 2: 
Security Architecture, International Standard 7498-2-1988(E), 1988. 

16. DIA, DODIIS Network Security and DODIIS Network Security for Information Exchange (DNSIX), DRS-2600- 
5466-86, 5 May 1986. 

17. DIA, DNSIX Interface Specifications, Version 2.1 (Final), DDS-2600-5984-91, October 1991. 

18. DIA, DNSIX Detailed Design Specification, Version 2.1 (Final), DDS-2600-5985-91, October 1991. 

19. Kent, S., U.S. Department of Defense Security Options for the Internet, RFC 1108, November 1991. 

20. Holbrook, J. P., and J. K. Reynolds, Site Security Handbook, RFC 1244, July 1991. 

21. Pethia, R., S. Crocker, and B. Fraser, Guidelines for the Secure Operation of the Internet, RFC 1281, 
November 1991. 

22. Shirey, R. W., "The Defense Message System," Computer Communications Review, Volume 20, Number 5, 
October 1990. 

23. Karp, B. C, L. K. Barker, and L. D. Nelson, "The Secure Data Network System," AT&T Technical Journal, 
May/June 1988. 

24. NIST, Secure Data Network System (SDNS) Network, Transport, and Message Security Protocols, NISTIR 90- 
4250; Secure Data Network System (SDNS) Access Control Documents, NISTIR 90-4259; Secure Data 
Network System (SDNS) Key Management Documents, NISTIR 90-4262, February 1990. 

25. Barker, L. K., and K. Kirkpatrick, "The SILS Model For LAN Security," Proceedings of the 12th National 
Computer Security Conference, NIST/NCSC, October 1989. 

26. Glover, F., Request for Comments on a Specification of Trusted NFS (TNFS) Protocol Extensions, Internet 
Draft, 24 May 1992. 

27. DIA, Department of Defense Intelligence Information Systems Style Guide, October 1991. 

28. DIA, Compartmented Mode Workstation Labeling: Source Code and User Interface Guidelines, Version 1 
(Final), DDS-2600-6215-91, November 1991. 

29. Defense Communications Agency, Department of Defense Secure Voice Architecture, 18 May 1990. 

30. Ashby, V., and L. Schlipper, "Security Standards for Object Data Management Systems," Computer Standards 
& Interfaces 13, Elsevier Science Publishers, 1991. 

629 



31. NCSC, Trusted Database Management System Interpretation of the Trusted Computer System Evaluation 
Criteria [the "TDI"], NCSC-TG-021, Version-1, April 1991. 

32. NIST, A Proposed Federal Information Processing Standard for Digital Signature Standard (DSS), Technical 
Report FIPS PUB XX, Draft, August 1991. 

33. Communications of the ACM, "The Digital Signature Standard Proposed by NIST," Communications of the 
ACM, Vol. 35, No. 7, July 1992. 

34. Murphy, K. V., and G. Soberg, "ODA and POSIX: Label Liaisons," Proceedings of the Sixth Annual 
Computer Security Applications Conference, IEEE Computer Society Press, December 1990. 

35. Ford, W., "International Activities ISO/DEC and CCITT," Proceedings of the Sixth Annual Computer Security 
Applications Conference, IEEE Computer Society Press, December 1990. 

36. DIA, Compartmented Mode Workstation Labeling: Encodings Format (Final), DDS-2600-6216-91, November 
1991. 

37. NIST, Standard Security Label for the Government Open Systems Interconnection Profile, Draft FIPS PUB 
XXX, 3 March 1992. 

38. NIST, GOSIP Chapter 6 Security Options (Proposed Draft for Version 3), March 1992. 

39. NIST, Proposed Government Network Management Profile (GNMP), Version 1.0,8 March 1991. 

40. Dempsey, J., C. Feil., and N. Lewis, Security Information Transfer Protocol, Internet Draft, April 1992. 

41. Ward, R., and P. Skeffington, "Network Management Security," Proceedings of the Sixth Annual Computer 
Security Applications Conference, IEEE Computer Society Press, December 1990. 

630 



SEPARATION    MACHINES 

Jon Graff 

Amdahl   Corporation 
1250 Arques Avenue (M/S  119) 

P.O. Box 3470 
Sunnyvale,   CA   94088-3470 

Summary 

This paper consists of 3  sections: 

• An  Introduction  which  defines  the  term  "Separation  Machine". 
• A description of Separation Machine Security labels as an example of the changes 

required in thinking about security based on the Orange and Red Books. 
Suggested  applications  of the  separation  machine  concept  to  "real"  security  problems. 

Introduction 

A   Separation  Machine  is  a  computer  that  is  divided  (multiplexed)  into  separate  environments 
(called  "Domains")  for  independently  running  "System  Control  Programs"  (SCPs).     Separation 
Machines have been characterized as "Virtual Machine Monitors" (VMMs)  [1,2,3].    In a 
Separation Machine, the SCPs run directly on the Separation Machine's hardware and it appears 
to each SCP that the SCP has sole possession of a complete and separate machine and that 
machine's facilities.    The operating systems within the Separation Machine's Domains are 
examples of SCPs. 

Separation  Machines are a special type of "non-interference" machines.    They are based on the 
Rushby  "Separation"   Security  Policy   Model   [4]*  and provide a great deal of inherent security 
for each of its Domains  [5].    In a Separation Machine, the isolation security policy is 
manifested  in the fundamental  architecture of the machine.    The Domains co-exist on the 
computer under the  supervision of the  Separation  Machine.    The Separation  Machine enforces 
the separation of each of the Domains by giving each Domain a unique time slice of the CPU as 
well as assigning each Domain its own disjoint set of resources such as storage and channels. 
During its time slice, the Domain and its SCP have exclusive use of the computer facilities and 
the Domain's resources  (CPU,  storage and channels).     Additionally, once the  Separation 
Machine assigns a resource to a Domain,  that Domain maintains sole and exclusive possession 
and access to that resource until  the Separation  Machine  oversees that resource's release. 

© Copyright   1992 Amdahl Corporation 

'in personal communications, Ron Watro, MITRE Corp., Bedford, MA, has indicated two 
ambiguities  in  Rushby's  presentation.     Dr.  Watro  is  currently  writing a clarification of the 
issues.    The issues  are: 

o    in Theorem  1, a false assumption  is made about transitivity (this was first pointed out 
by Kelem and Fiertag [2]). 

o     in the generalized proof, the six  separation conditions are not shown to imply secure 
isolation. 

631 



When the Domain's time slice expires, the Separation Machine puts the SCP and its Domain into 
a state of "suspended animation."    At the beginning of a time slice, the Separation Machine 
reactivates the Domain and its SCP into exactly the same active state the Domain and the SCP 
were  in  immediately prior to being placed  into suspended  animation. 

At the time of Domain creation, the System Security Authority (SSA)  supervising the 
Separation Machine defines the environment for the SCP.    While running in its Domain, the SCP 
knows only the facilities that the Separation Machine provides it.    The SCPs have n_a discretion 
on what facilities to which they have access, but of course, each SCP has discretion as to which 
facilities it wishes to use out of those available to it. 

Thus, the Separation Machine enforces on the SCPs a very strict Mandatory Access Control 
(MAC) policy. This MAC policy is based on a security policy enforced at the will of some 
privileged user(s)  (e.g., the SSA), and not at the will of non-privileged users.    This is in 
contrast to MAC based on sensitivity labels as defined in the "Orange" Book  [6]2. 

A Separation Machine may be thought of as a bank vault that contains a set of safe-deposit 
boxes.    Each SCP resides within its own safe-deposit box, i.e., its own Domain.    Not only are the 
SCPs  safe from unauthorized external  influences, but more  importantly,  each  SCP  is  separated 
from any influence on each other, i.e., the contents of one safe deposit box cannot know about 
or influence the contents of another safe deposit box.    Indeed, a Separation Machine provides 
such  robust security that the SCPs do not have to supplement their  individual  security policies 
in  order  to  maintain   their  security  assurances. 

In Figure  1, the  Separation Machine is  schematically represented by the "brick wall" and the 
"windows" are the Domains.    The figure schematically shows the Separation Machine fully 
populated  by  seven  independently  operating  SCPs. 

=o 
SCP1 

CO 
SCP 2 SCP3 

a a SCP4 2E 
• ill Xi 1111 111111 I   I   I   I   I   13 ga x* ,\.\.\, 

i i i i i; 133  '•••••••'••.•.'•'••.• i i i i i i i i i i i . i' i rrr • J • • J ' T    I    I    I'l 

SCP5 SCP6 a SCP7 3d 

Figure   1: A  Separation  Machine  showing "populated" Domains 

Security    Labels    in    Separation    Machines 

The security policies set forth in the Orange Book [6] and Red Book [7] are based on the trusted 
"reference monitor" concept with an emphasis on the Bell and LaPadula Security Policy Model 
[8].    The reference monitor's function is to ensure that access is only permitted when the 
subject's and object's labels meet the requirements set forth in the security policy.    The 

2 p. 114:    "Mandatory   Access   Control   -   A  means  of  restricting  access  to  objects  based  on 
the sensativity (as represented by a label) of the information contained in the objects and the 
formal  authorization  (i.e.,  clearance)  of subjects  to access  information  of such  sensitivity." 
(emphasis   added) 

632 



concept calls for the trusted reference monitor to examine  "labels"  to determine  if a  "subject" 
(an active agent, such as a calling program or a human) has permission to access an "object" 
(passive resource such as a piece of data).    The subject's label indicates the characteristics 
that an object must have in order for a subject to be permitted to access the object.    The object's 
label  identifies  what characteristics the subject must have  in order to be permitted to access 
the  object. 

The    Bell    and    LaPadula    Family    of   Security    Policies 

The Bell and LaPadula family of security policies (BLFSP) are based on a reference monitor 
that requires  sensitivity-levels as a mechanism for policy enforcement.    The model  is based on 
the environment in which multiple subjects may have access to multiple objects.    In the BLFSP 
the  reference monitor adjudicates the access control  between  subjects and objects by comparing 
their  "sensitivity  labels"  according to the  Mandatory Access Control  (MAC) policy.     The 
reference monitor permits a subject to access an object only if the subject's and object's 
sensitivity   labels  fulfill   the  requirements  of  the  security  policy. 

The  important point of this discussion  is that sensitivity labeling is a required part of 
maintaining  the  BLFSP. 

The    Rushby    Separation    Security    Policy 

In contrast to the more familiar BLFSP, the Rushby Separation Security Policy is "Isolation" 
enforced by the mechanism  of "Separation."    The Rushby Isolation Policy requires the 
segregation of each subject and its objects from any other subject and their objects. Therefore, 
it  is the  Separation  Machine's  responsibility to ensure that each  Domain,  and  therefore  its 
respective SCP, is kept totally separate and without knowledge of or access to any other 
Domain's   resources. 

Comparison    of   the    BLFSP   and    the    Rushby    Policy 

The Rushby policy of Isolation as implemented in the separation security model does not have 
the same requirements as the BLFSP.    Both obtain Mandatory Access Control (MAC) but through 
different mechanisms.     A Separation Machine ensures  MAC by total  separation,  i.e.,  the 
Separation Machine's MAC is Separation; in contrast, the BLFSP's MAC requires the 
adjudication of the sensitivity  labels of the subjects and the objects. 

Table I shows the two types of Security Labels.    The BLFSP requires Sensitivity labels, whereas 
the  Isolation policy requires  "Separation"  labels.     Each  SCP within the Separation  Machine 
defines its own individual security policy.    An SCP may base its security policy on any one of 
a number of different security policies; one choice being those belonging to the BLFSP. 
Therefore the individual  SCPs may,  indeed,  require sensitivity labeling.    However,  it is very 
important to note that the operations within the SCP are out of the purview and responsibility 
of the Separation  Machine. 

633 



Table    1:    Types   of   Security    Labels 

Major   Class   of 
Labels 

Sub-Labels Function 

Sensitivity Used by the BLFSP Reference Monitor to 
determine if a subject should have access to 
an object. 

hierarchical Indicate  "classification  level,"  e.g.. Top 
Secret, Secret, or Confidential.    These 
labels  correspond  to  the  security  risk  of 
having  the  information   compromised. 

non-hierarchical Indicate   "compartments."      Compartments 
are subgroups of a classification level  (e.g., 
artillery,  armor,   infantry  or  Army,  Navy 
and Air Force).    These labels do NOT exist 
independently  of  the   classification   level. 

Separation Used by the Separation  Machine reference 
monitor to determine if a Domain has 
possession  of a  resource. 

"Sensitivity"     Labeling     contrasted     with     "Separation"     Labeling 

Traditional     "Sensitivity     labels"     supporting     the     reference     monitor     model 

The  BLFSP  require  sensitivity  labeling.     Sensitivity  labeling  has  two  aspects,  a  hierarchical 
part and,  if required,  a  subservient,  non-hierarchical  part.     The  hierarchical  part of the  label 
refers to the classification  level  or  "security  sensitivity,"  e.g., Top  Secret,  Secret,  and 
Confidential.     The  hierarchical  classification  levels  define  the  security  risk  of the 
unauthorized release of the  information.     Within  each classification  level  there may exist 
"compartments" that define areas of "the need to know" or access requirements.    These 
compartments  are   "non-hierarchical"  because  they  require  the  same  clearance  for  access, 
however they  each  have  a  different  "need-to-know"  requirement. 

In the BLFSP, each subject is assigned permission to access information or perform tasks based 
on the subject's security risk  (classification level)  and  "need to know"  (compartment).    The 
same labeling is applied to objects.    These sensitivity labels must be protected from 
unauthorized  changes  and  therefore  strict  requirements  are  made  on  how  the  sensitivity  labels 
are generated, used, monitored and protected.    A MAC policy mandates the labels assigned in 
an   automatic,   prescribed   manner. 

The     Separation     Machine     "labeling"     solution^ 

The  Separation  Machine  does not have or need  the  traditional   "sensitivity  labels"  to ensure 
MAC.    The Separation Machine ensures MAC by enforcing the strict separation of the Domains 
through hardware.    This separation begins at the time of Domain activation.    At that time, the 

*Parts of this section have been presented at the Standard Security Label for GOSIP, An 
Invitational   Workshop,  June,   1991. 

634 



SSA assigns specific resources that the Domain may use.    When the Domain receives a resource, 
the  Separation  Machine  assigns  the  Domain's  identity  to  that resource. 

In Rushby's discussion each Domain has a different "colour" that is used to assist in 
separation.    Thus the  "colours" are exactly equivalent to the Separation Machine Domain 
identifiers and may be thought of as "Separation" labels.    A "snapshot" of a Separation Machine 
shows that each interaction between subjects (SCPs and Domains) and objects (e.g., storage, and 
channels)  is, in fact, based on  separation  labels:     every external  storage device  is  attached to 
one or more channels of the same "colour."    Thus each of these channels is attached to exactly 
one Domain of the same "colour."    All storage has the same "colour." 

It must be emphasized that the Separation  Machine does not need or require  sensitivity  labels 
to enforce the MAC through the security policy of Separation.    In the Separation Machine, MAC 
is maintained with separation labels.    The separation labels permit the Separation Machine to 
ensure that the Domains are totally separate and independent.    The operation of the individual 
SCPs within the Domains are of no concern to the Separation Machine.    Each SCP will have its 
own security policy and these SCP security policies (e.g., MAC policies) may require the 
traditional   sensitivity   labels. 

Examples    of    other    "Security"    Labels 

Table  2 presents  other examples  of different types  of security  label 
different   security   policies. 

s  required  by  various 

Table    2:     Various    Security    Policies    and    Their    Mechanisms 
and     Security     Labels 

Policy Mechanism Security      Label 

Bell  - LaPadula Access  Control   Monitor Sensitivity 

Biba Integrity   Control   Monitor Integrity 
Clark  - Wilson Integrity  Control   Monitor Integrity 
Chinese  Wall Individual    Responsibility 

for  Separation 
Identity 

Rushby Separation Separation 

Suggested    Security    Uses    for    Separation    Machines 

As shown  in Figure  1, the  Separation  Machine permits the consolidation of several  independent 
and separate SCPs each running on its own computer systems to run on a single Separation 
Machine computer system.    The separation in a Separation Machine is so strong that: 

•     each SCP may have its own security policy so, for example, it is possible to implement 
Bell and LaPadula (B-P)[8], Biba [9], Clark/Wilson [10], Rushby or Chinese Wall [11] 
security  policies  in  different  SCPs  that are  simultaneously  running  in  one  Separation 
Machine, see Figure 2. 

635 



Figure  2: A   Separation   Machine,   simultaneously   implementing  Different  Security 
Policies  each  in  Different  Domains 

•     depending on the security assurance of the  Separation Machine, it is possible to run 
SCPs  having different security assurance  levels  within  the  same  Separation  Machine, 
see Figure 3.    Thus in a Separation Machine having a security assurance of Al, it would 
be possible to run an SCP with a D rating in one domain and an SCP with an Al in a 
second  domain  without diminishing  the  Al   SCP's  security  assurance. 

Figure  3: A  Separation  Machine  Accredited  to  Al   simultaneously  running  Different 
Security  Levels  each   in   Different  Domains 

As based on the "Yellow Book" [12], the security assurance ascribed to the Separation Machine 
defines the possible usage of the  Separation  Machine.    The higher the security assurance,  the 
more complex the mixture of sensitivity levels that the machine can accommodate.    For 
example, if the Separation Machine has the security assurance of Bl, it may be used in two 
possible ways, as shown in Figures 4 and 5. 

•     Based on the Yellow Book, the Separation Machine may be used to accommodate a 
mixture of SCPs that have a security difference of 1.    Thus the SCP's may have a rating 
difference of Unclassified (U) and Confidential (C) or Confidential (C) and Secret (S) as 
shown in Figure 4. 

Figure  4: A Separation  Machine Accredited  to  Bl  running Domains containing SCPs 
having   two  security   levels. 

636 



Alternatively, the Separation Machine may run SCPs at the Top Secret (TS) level that 
have up to two different compartments (TSa and TSD) as shown in Figure 5. 

Figure  5. A Separation Machine  Accredited to Bl  running Domains containing Top 
Secret (TS) SCPs having two different compartments (a and b). 

If the Separation Machine is assured to the B2 level, the Separation Machine may be used as 
schematically  shown  in  Figures 6  and  7. 

•      In Figure 6,  the Separation  Machine can contain SCPs running at a security  separation 
of 2; thus the Separation Machine can contain both Secret (S) and Top Secret (TS) SCPs. 
Similarly,  but  not  shown,  a  Separation   Machine  could  simultaneously  run  Unclassified 
(U), Confidential (C) and Secret (S) SCPs. 

Figure  6: A  Separation  Machine  Accredited  to  B2 running Domains containing Secret 
(S) and Top Secret (TS) SCPs. 

As shown in Figure 7, the Separation Machine can contain SCPs running at Top Secret 
that have  an  unlimited  number of compartments. 

Figure   7: A  Separation  Machine  Accredited to B2 running  Domains containing Top 
Secret  SCPs   with   several  different  compartments. 

In  addition  to permitting  the  consolidation of separate computer systems onto a single 
Separation  Machine,  the  Separation  Machine presents  a solution  to  the  "information  downgrade" 
problem, as illustrated in Figures  8, 9 and  10.    The "information downgrade" problem, in the 
context of this paper,  is  the problem  that occurs  when  SCPs of different security sensitivity 
levels need to communicate.    According to the BLFSP, the lower security level SCP may only 
write information "up" to the higher security level SCP and the upper security level SCP may 
only  read  information that resides "down" in the lower security level SCP.    Therefore, the 
upper security level SCP cannot even send message acknowledgments (e.g., ACKs and NACKs) to 
the lower SCP to complete a communication loop.    The problem is more acute than simply 

637 



fulfilling a message protocol.    There are many instances where  high  security  level  information 
in one SCP must be rapidly "downgraded" and sent to a lower level security SCP.    For instance, 
as a hypothetical example, selections from the Joint Chief of Staff's target list must be sent to 
the  individual  mission  commanders  through  a  series  of intermediate  and  successively  lower 
security   levels. 

•     Figure 8 shows an example of the most common current solution.    Information from a 
Top Secret SCP on one machine must be transferred to a removable medium such as a 
print-out or a disk and then manually passed to a human intermediate who examines 
the contents and approves the transfer.    Only then may the information be placed on the 
Secret SCP running on the second machine.    This physical transfer is referred to as 
"sneakernet"   [13]. 

-- (   gnoakornot   ) 

Machine 1 
S 

Machine 2 
TS 

Figure  8: Information  Downgrade  using  "Sneakernet"  between  two  separate 
machines. 

•     Figure 9 presents a more automated approach.    The TS and S SCPs, each residing in its 
own  separate  and distinct Domain,  are  connected  by dedicated,  defined channels 
through a trusted automated piece of hardware that is generically called a "Guard" (for 
examples see  [14] and  [15]).    The trusted Guard contains trusted software that examines 
the  information  to  be  transferred  and  permits  only predefined,  acceptable  data  to pass 
between the SCPs. 

Figure  9: Information Downgrade in a Separation Machine using an External Guard 

Figure 10 presents a potential further enhancement.    The TS and the S SCPs, each 
residing in its own  separate and distinct Domain, are again connected by dedicated, 
defined channels through a trusted Guard.    However, in this case the Guard resides 
within its own Domain in the Separation Machine.    Thus the Separation Machine itself 
ensures that the only connection between the TS and S SCPs is possible through the 
Guard, and the Guard cannot be bypassed.    The Guard is an SCP residing within a 
Domain provided by the trusted hardware of the Separation  Machine.    Consequently, 
only the Guard's  software has  to undergo the  accreditation process;  thus eliminating 
the need to design, build, evaluate and accredit the Guard hardware. 

638 



Figure   10: Information Downgrade in a Separation Machine using an Internal Guard 

Conclusions 

In conclusion,  it has been shown that: 

Separation  Machines are a special  type of "non-interference" machines.    They are based 
on the Rushby "Separation" Security Policy Model and provide a great deal of inherent 
security for each of its Domains. 

• The Rushby  Separation  Security Policy requires a re-thinking of Orange/Red  Book 
requirements   such   as   Sensitivity   Labels. 

• The Separation Machine presents solutions to a number of security problems, and of 
particular   importance,   information   downgrade. 

References 

[1]       Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin, Andrew H. Mason, and Clifford E. 
Kahn, "A VMM Security Kernal for the VAX Architecture", Proceedings of the  1990 IEEE 
Computer Society Symposium on Research in Security and Privacy, May 7-9,  1990, 
Oakland,  CA,  pp.  2-19. 

[2]       Nancy L. Kelem and Richard J. Feiertag, "A Separation Model for Virtual Machine 
Monitors", Proceedings:  IEEE Computer Society Symposium on Research in Security and 
Privacy, Oakland,  CA,  May 20-22,   1991, pp.  78-86. 

[3]       Russel, T. T. and Schaefer, M. Toward a High B Level Security Architecture for the IBM 
ES/3090 Processor Resource/Systems Manager• (PR/SM• );  12th NCSC, October 1989, pp. 
184-196. 

[4]       Rushby, J. M., "Proof of Separability", A Verification Technique for a Class of Security 
Kernal  (Revised  Version of SSM/11) Reprint (slightly expanded) of a paper presented at 
the  5th  International  Symposium  of Programming, Turin,  Italy,  April  4-6,   1982. 
(Springer-Verlag  LNCS  No.  137 pp.  352-367). 

[5]       Robert  W.  Doran,  "Amdahl  Multiple-Domain  Architecture", Computer (IEEE),  Vol.  21 
(10),  October   1988,  pp.  20-28. 

[6]       Department of Defense  Standard:  Department of Defense Trusted Computer System 
Evaluation  Criteria,  DOD  5200.28.STD,  December  1985. 

639 



[7]       National   Computer  Security   Center  Trusted  Network   Interpretation,   NCSC-TG-005 
Version-1,  July  31,   1987. 

[8]       D. E. Bell and L. LaPadula, "Secure Computer System: Unified Exposition and Multics 
Interpretation", MTR-2997 Rev.l, MITRE Corp., Bedford, MA,  1976. 

[9]       K. J. Biba, "Integrity Considerations for Secure Computer Systems", National Technical 
Information  Service,  Springfield,  VA,  NTIS  AD-A039324, 

[10]    David D. Clark and David R. Wilson, "A Comparison of Commercial and Military 
Computer Security Policies", Proceedings of the  1987  IEEE Symposium on Security and 
Privacy,  April   27-29,   1987,  Oakland,  CA,  pp.   184-194. 

[11]    Dr. David F.C.Brewer and Dr. Michael J. Nash, "The Chinese Wall Security Policy", 1989 
IEEE Computer Society Symposium on Security and Privacy, May 1-3,  1989, Oakland, CA, 
pp.   206-214. 

[12]    Technical  Rationale  behind  CSC-STD-003-85:     Computer  Security  Requirements: 
Guidance for applying the Department of Defense Trusted Computer System Evaluation 
Criteria  in  Specific  Environments,  CSC-STD-004-85,  June  25,   1985. 

[13] James B. Hiller, "Sneakernet: Getting a Grip on the World's Largest Network, Proceedings 
of the 14th National Computer Security Conference, October 1-4, 1992, Washington, D.C., 
pp.   533-542. 

[14]     Michelle J. Gosselin, "The Development of a Low-to-High Guard", Proceedings of the  14th 
National Computer Security Conference, October  1-4,   1991, Washington, D.C., pp.  157- 
166. 

[15]     Michael F. Thompson, Roger R. Schell, Albert Tao and Timothy E. Levin, "Introduction to 
the Gemini Trusted Processor", Proceedings of the  13th National Computer Security 
Conference,  October   1-4,   1990,   Washington,  D.C.,  pp.   211-217. 

640 



Software Forensics: Can We Track Code to its Authors? 

Eugene H. Spafford Stephen A. Weeber 
Department of Computer Sciences Lawrence Livermore National Laboratory 

Purdue University P.O. Box 808, L-119 
West Lafayette, IN 47907-1398 Livermore, CA 94550 

spaf@cs.purdue.edu weeber@llnl.gov 

June 29,1992 

Abstract 

Viruses, worms, trojan horses, and crackers all exist and threaten the security of our computer systems. 
Often, we are aware of an intrusion only after it has occurred. On some occasions, we may have a fragment 
of code left behind — used by an adversary to gain access or damage the system. A natural question to ask 
is "Can we use this remnant of code to identify the culprit?" 

In this paper, we detail some of the features of code remnants that might be analyzed and then used 
to identify their authors. We further outline some of the difficulties involved in tracing an intruder by 
analyzing code. We conclude by discussing some future work that needs to be done before this approach 
can be properly evaluated. We refer to our process as software forensics, similar to medical forensics: we 
are examining the remains to obtain evidence about the factors involved. 

Keywords: analysis, reverse engineering, evidence 

1    Introduction 

An aspect of both computer crime and computer vandalism that makes them more attractive activities is 
their anonymity. Whether the method of attack is virus, worm, logic bomb, or account breaking, tracing the 
actions back to an individual is generally an extremely difficult task. In one well-known case, Cliff Stoll's 
German hacker did not fear discipline even after being detected, trusting in the inability of anyone to trace 
his many network hops.[6] Authors of viruses distribute them without worry of being identified as the 
source. Participants in discussions in electronic forums tend to become more hostile than they ever would 
in face-to-face conversations; the anonymity of the transaction lowers their inhibitions. 

Taking steps to remove the anonymity in computer use, such as more complete session logging and im- 
proved network protocols that include authentication information, can only help to discourage an attacker. 
However, there are limits to the strength of methods that can be economically employed. Furthermore, no 
method is 100% effective under all circumstances. 

Often, the evidence remaining after a computer attack has occurred includes the instructions introduced 
into the system to cause the damage. Viruses, for example, usually leave their code in the infected programs. 
These remnants of an attack may take many forms, including programming language source files, object 
files, executable code, shell scripts, changes made to existing programs, or even a text file written by the 
attacker. It would be useful if these pieces of information could be utilized in a way that could help identify 
or confirm the source of the attack.   This would be similar to the use of handwriting analysis by law 

©1992 E. H. Spafford and S. A. Weeber 

641 



enforcement officials to identify the authors of documents involved in crimes, or to provide confirmation of 
the role of a suspect. 

Handwriting analysis involves identifying physical features of the writing in question. A feature of the 
writing can be anything identifiable about the writing, such as the way the i's are dotted or average height of 
the characters. The features useful in handwriting analysis are the writer-specific features. A feature is said 
to be writer-specific if it shows only small variations in the writings of an individual and large variations 
over the writings of different authors. 

Features considered in handwriting analysis today include shape of dots, proportions of lengths, shape 
of loops, horizontal and vertical expansion of writing, slant, regularity, and fluency.[12] The majority of 
features in most handwriting are ordinary. However, most writing will also contain features that set it apart 
from the samples of other authors, features that to some degree are unusual.|9| A sample that contains i's 
dotted with a single dot probably will not yield much information from that feature. However, if the i's are 
instead dotted with hearts, that feature may identify the author. 

Identification of writer-specific features generally requires many samples. A person's handwriting is 
expected to change both as time passes and under different writing conditions. Too few samples can lead 
to misidentification of writer-specific features. Additionally, care must be taken in selecting samples that 
show the natural writing of an individual. Individuals often attempt to hide their identity by disguising 
their writing. 

Identification of computer code by matching identifying characteristics should likewise be possible. 
Although programs do not exhibit the same types of physical features that handwriting does, programming, 
especially in a language rich in data types and control structures, has considerable room for variation and 
innovation. Even if coding is from detailed specifications, room exists for personalization. Programmers 
generally acknowledge that they each have a unique coding style. Using appropriate stylistic elements may 
help in the production, reuse, and debugging of code. Many texts recommend elements of style to use when 
programming, and often programmers integrate selected elements of others' styles into their own repertoire 
as they gain experience programming (cf. [3,11,13,8,21]). 

Another method of verifying authorship is through the use of statistical inference. This technique has 
long been used to verify the authorship of prose, but its fundamental concepts appear directly applicable to 
software. Additionally, it overcomes one of the main criticisms of the techniques of handwriting analysis: 
subjectivity. Handwriting analysis depends significantly upon judgments made by the analyst. The tech- 
niques used in prose classification are rooted in statistical theory and have less opportunity for bias from 
the investigator. 

Prose classification is generally conducted by identifying a large set of easily recognized features of the 
text. Often analyzed features include word and sentence length, the number of uses of selected words, 
percentages of nouns and adjectives, word pairs, and the use of comparatives and superlatives. Statistical 
theory is applied to the features found in works of both known and questioned authorship to produce a 
probabilistic determination of authorship. The advantage of this method lies in the fact that, while a single 
feature of a document is unlikely to provide much information, a large set of variables, such as the usage 
rates for dozens or hundreds of different words, stand a far better chance of indicating classification of the 
document! 15] 

Such analysis should also prove useful in software forensics. Selecting several variables that may be 
measured from source code, a profile of an author's normal coding practices could be established from 
code of undisputed authorship. Then, using an established classification model, the unknown code may be 
compared. 

Possible features of software that could prove differentiating under this technique include most of the 
features and metrics mentioned later in this paper. Program size, function size, Hamming distance between 
variable names, and ratio of comments to code could be easily measured. Just as some authors of prose show 
preferences for some words over others, programmers often demonstrate preferences for certain language 
constructs over others. This can be especially evident in feature-rich languages, such as Ada. These features 
might include a preference for while loops over for or repeat. . until loops, use of function pointers, 
function overloading, and use of inheritance and polymorphism. Use of certain programming techniques 

642 



may also discriminate among authors. An author may favor certain data structures and system calls over 
others. For example, an author might show a preference for using hashed data structures over tree based 
structures. 

A source of variables for analysis that bears further investigation is source code style analysis programs. 
cstyle, one such program, rates the programming style present in C programs, assigning numeric scores 
in eleven stylistic areas, including characters per line, percentages of comment lines, indented lines, and 
blank lines, space characters per line, number of different reserved words, goto use, number of included 
files, and use of constants.1 It seems likely that given a large enough sample of source code, a stylistic profile 
could be developed for a programmer using this tool. 

The keys to identifying the author of suspect code are selection of an appropriate body of code and 
identification of appropriate features for comparison. This may not be easy to do if the programmer has 
attempted to hide his authorship, or if appropriate sample code is not available. Nonetheless, our personal 
experience is such that we believe important features might still be present for analysis, in some cases. 
At the least, analysis of the characteristics of the code might well lead to the identification of suspects to 
examine further. 

Additionally, if sufficient background research is done to establish a good statistical base, and if large 
enough samples of code are present, known statistical methods currently applied to determine authorship 
of prose may also be applied to code. These methods, although perhaps not certain, may possibly be 
combined with the analysis of stylistic features to provide clues to the authorship of a piece of code. 

In the following section, we have detailed some of the features that we believe to be the most useful in 
such a comparison. We believe that an in-depth study of these features in the code of many programmers 
may result in some useful forensic information. 

2   Analysis of Unauthorized Code 

We will consider two different cases where code remnants might be analyzed. These differ in the nature of 
the code that was left for analysis. 

2.1   Analysis of Executable Code 

Often, the remnant of an attack is a piece of executable code, such as a virus or worm program. Unfortunately, 
many of the features of the code that could have been used in analysis have been stripped away during 
compilation. Comments and indentation have been removed, and identifiers have been replaced by memory 
addresses or register names. Additionally, optimizations may have been performed on the code, possibly 
giving the executable code a very different structure than the original program source. 

For example, an optimizing compiler might generate the same executable code for each of the following 
C language program fragments: 

for (x = 0; x < 10; x++) { 
func(x); 

) 

x = 0; 
while (x < 10) { 

func(x); 
++x; 

) 

cstyle was taken from the Usenet, author unknown. 

643 



x - 0; 
while (TRUE) { 

func(x) 
if (x++ == 10) break; 

} 

x - 1; 
do { 

func(x-1); 
x++; 

} while (x <= 10); 

The original source code might have actually been in Fortran: 

DO 15 X=0, 9, 1 
CALL FUNC(X+0) 

15    CONTINUE 

or in Pascal: 

for x   :=•=  0  to  9 do 
func(x) ; 

Each of these different source code segments exhibits features that could possibly be used in identifying 
the style of programming of an individual. These features may be lost to the examiner of the resultant 
executable code. 

For example, during the analysis of the Internet Worm program ([7, 19]), its remnant was reverse- 
engineered to C programs that compiled to identical binary versions. In many cases, the analysts chose 
arbitrary names for variables and local subroutines—the compiler would not save the values, so the choices 
did not matter. When the disassembled code was later matched against a copy of the "real" source code, 
many small differences with the reverse-engineered copies were observed that compiled to the same binary. 

Executable code, even if optimized, still contains many features that may be considered in the analysis: 

Data Structures and Algorithms Competence with, and preference for, certain data structures may be 
extracted from executable code. This may provide a clue to the background of the code author. For 
example, it is unreasonable to suspect a beginning programmer of authoring code that made extensive 
use of a B-tree for data storage. Similarly, the choice of algorithms used in a program may present 
features worthy of analysis. It seems likely to conclude that a programmer will continue to use 
algorithms with which they are particularly comfortable.2 

As an example, consider the Internet Worm mentioned earlier. The code used linked lists as the 
primary data structure for building long lists that were repeatedly searched. This was certainly a poor 
approach, as the repeated searches of long lists dramatically reduced the efficiency of the program. 
This was noted in [19], and a correspondent later related that the Worm's author, Robert T. Morris, 
had been instructed in the Lisp programming language in his first undergraduate data structures and 
algorithms course.3 Although a coincidence such as this is certainly not sufficient evidence upon 
which to base any specific action, it may help reinforce other conclusions, obtained through other 
means. 

Related to this is the manner in which data structures are accessed. In languages with both pointers 
and arrays, the choice of which mechanism to use is often very programmer-specific.   Likewise, 

Our experience with both undergraduate and graduate student programmers supports this supposition. 

Lisp is primarily a list-processing language. 

644 



using overlapped structures (the EQUIVALENCE statement in Fortran, and the union statement in C, 
for instance) provide a similar indicator. Some programmers use these structures, while others use 
coercion and bitwise operations to achieve the same goals. 

Compiler and System Information Executable code may contain telltale signs of its origin. A unique 
ordering of the instructions may point to a specific compiler as the source of the code. The code may 
contain invocations of system calls found only in certain operating systems. These bits of information 
may rule out or support individuals as the author of the code. 

In the case of many viruses, analysis of the binary code may reveal that it was written in C or 
Pascal from a certain vendor. This can be determined because support routines (sometimes known as 
"thunks"[l]) and library calls unique to that vendor are present in the binary. 

Programming Skill and System Knowledge The level of expertise of the author of the program, with both 
the operating system in question and computer programming in general, may be estimated from 
the executable code. For example, programming that duplicates functionality already provided by 
standard system calls, makes extensive use of recursion, or makes proper calls to advanced system 
functions could indicate different levels of knowledge and skill. 

Additionally, the inclusion or omission of error-checking code is also quite telling. Some programmers 
seldom (or never) include exception handling code in their programs. Others always include such 
code. In instances where the code is sometimes included, this may provide an identifiable set of 
routines that the author always checks (perhaps because of past program failures with those routines). 
This set could then be compared with the set from other, known programs as a metric of similarity. 

Choice of System Calls The support functions used in the code may also indicate something about the 
background of the programmer. For instance, in the UNIX system, there are sometimes two different 
calls to locate the first instance of a particular character in a string. The index routine is derived from 
the Berkeley (BSD) version of UNIX, and the st rchr function is derived from the System V version of 
UNIX. Users will usually exhibit a distinct preference for one call or the other when programming in an 
environment that provides both functions. Experience with reading and porting code has convinced 
us there are many such observable preferences. 

Errors Programmers will usually make errors in all but the simplest or most carefully coded programs. 
Some programmers will consistently make the same types of errors, such as off-by-one errors in 
loops processing arrays.4 Cataloging and comparing these faults may provide yet another metric for 
determining authorship of suspect code. 

It is possible that the symbol table may still be present in the executable, as is often the case when the 
compiler is told to generate debugging information. In this case, several of the features normally associated 
with program source code may also be examined in the executable code. 

2.2   Analysis of Source Files 

Program source code provides a far richer base for writer-specific programming features. 

Language Perhaps the most immediate feature of the code is the programming language chosen by the 
author. The reasons behind the choice may not be obvious, but could include availability and knowl- 
edge. It would be unreasonable to suspect an individual of being the author of a program written in 
a programming language that he does not know. 

Formatting The formatting of source code often exhibits a very personal style. Format also tends to be 
consistent between programs, making it easier for an author to read what she has written. These 
factors indicate that the formatting style of code should yield writer-specific features. Placement of 
compound statement delimiters, multiple statements per line, format of type declarations, formatting 

This same tendency can be used in other contexts to direct software testing to likely faults.[4,20] 

645 



of function arguments, and many other characteristics may be identified in the code in question. This 
assumes that the programming environment in question does not have a rigid, widely-used code 
formatter ("pretty-printer") that may have produced the observed style. 

Another bit of information that could become available in this analysis is editor choice. For example, 
it may be possible to recognize the formatting styles produced by an editor such as Emacs, or to detect 
embedded mode-setting commands. Syntax-directed program editors may also provide a distinct 
and unusual style, should they become somewhat more common. 

Special features Some compilers support pragmas or special macros that are not present on every system. 
The presence of any of these special features may provide clues as to the software development 
environment of the author. Inclusion of conditional compilation constructs, especially those involving 
initialization and declaration files, may also provide similar information about environment. 

Comment Styles Users often tend to have a distinctive style of commenting their programs. Some use 
lines of a graphic character to set off comments from code. Others place comment headers above each 
function, describing it. Still others avoid comments at all costs. 

The frequency and detail of the comments present may also be distinctive. Some programmers 
comment with short tags, and others write whole paragraphs. This may result in a measurable 
pattern. 

Variable Names Choice of variable names is another aspect of programming that often indicates something 
about the author. Some programmers prefer to connect words in identifiers with an underscore, 
others take the SmallTalk approach and capitalize the first letter of each word with no separator. 
Ardent software engineers may use a naming scheme, such as Meta-Programming, that includes type 
information in the variable name.[17] Still others would never dream of using more than one or two 
characters in a variable name. A useful metric for identifier analysis might be something such as the 
distribution of Hamming distances between names. 

Most experienced programmers have a set of "utility" variable names they use for local variables 
when coding small segments. Common examples include junk, foo, temp, ii, and indx. An 
analysis of these names may be useful in matching against other code by the same author. 

Spelling and Grammar Many programmers have difficulty writing correct prose. Misspelled variable 
names (e.g., TransactoinReciept) and words inside comments may be quite telling if the mis- 
spelling is consistent. Likewise, small grammatical mistakes inside comments or print statements, 
such as misuse or overuse of em-dashes and semicolons might provide a small, additional point of 
similarity between two programs. 

For example, a former colleague of one of us would consistently misspell forms of the word "separate." 
Thus, seeing a prompt in a program that read 

Enter 3 values, seperated by a blank: 

was a fairly certain indicator that he had written the code. 

Use of Language Features The way in which authors make use of a programming language may also 
differentiate them. Some authors may consistently use a subset of the features available, while others 
may make more complete use of all features. For example, an author may consistently use a while 
loop, even when a for/do or repeat. . until loop would be more appropriate. Similarly, the use 
of nested if statements in place of case statements, or the (lack of) specification of default options in 
case statements could be differentiating features of code. 

Other examples that fall into this category include returning values in procedure parameters versus 
function return values, use of enumerated data types, use of subrange types, use of bitwise boolean 
operations, use of constant data types, and use of structures and pointers. 

The average size of routines may also be used as an identifying feature: some programmers will code 
300 line modules, and others will never have a module larger than will fit on the screen all at once. 
This, of course, is highly dependent on the overall size and complexity of the task being coded. 

646 



One aspect of use of language features relates to computer languages that a programmer may know 
best or learned first. For instance, programmers who spend most of their time using procedural 
languages seem to seldom use recursion. Learning programming in a language such as Basic or 
Fortran is also likely to lead to reduced use of while and do ... until structures. Further study of 
such influences may yield a discernable tendency to use or avoid particular language features. 

Scoping The ratio of global to local identifiers may be an author-specific trait. Additionally, declaring 
helper functions as accessible only in a limited scope may also contribute to identification of the 
programmer. 

Execution paths A common factor found when analyzing student programs and also when analyzing some 
malicious code (including [19]) is the presence of code that cannot be executed. The code is present 
either as a feature that was never fully enabled, or is present as code that was present for debugging 
and not removed. This is different from code that is present but not executed because of an error in a 
logic condition — it is code that is fully functional, but never referenced by any execution path. 

As an example, consider the following section of code in the C language: 

fdefine DEBUG 0 
main() { 

/* some amount of code here */ 

if (DEBUG) { 
printf ... many debugging values here ... 

I 

In this example the code will never be executed. The manner in which it is elided leaves the code 
intact, and may provide some clue to the manner in which the program was developed. Furthermore, 
it may contain references to variables and code that was not included in working parts of the final 
program — possibly providing clues to the author and to other sources of code used in this program. 

Bugs Some authors consistently make the same mistakes in their coding. Often, these are faults that only 
rarely cause problems, and then only with extremal values or when ported to other hardware. It is 
precisely because these bugs seldom cause problems that users tend to continue to introduce them 
into their code. The presence of identifying bugs should provide very strong evidence of similarity 
between two pieces of code. 

As examples, we have noted the following in code by both students and colleagues: 

• Failure to code bitwise operations to reflect different byte ordering on the target machine — the 
so-called "little-endian" vs. "big-endian" problem. 

• Failure to check for numeric overflow or underflow, or assuming that the internal numeric 
representation was of a certain (different) form (cf. [20]). 

• Assuming that uninitialized pointers can be dereferenced without generating a fault. 

• Assuming the stack can hold very large value-copy parameter structures when doing subroutine 
calls. 

• Failure to check error returns from some system calls that can (rarely) fail. 

Metrics Software metrics might be employed to identify an individual's average traits. Some applicable 
metrics could include number of lines of code per function, comment-to-code ratio, function complex- 
ity measures, Halstead measures, and McCabe metrics.[5] 

Cliches Programmers tend to write software in terms of well-understood algorithms and data structures 
known as cliches.   Examples include sorted lists, binary searches, and hash tables. These cliches 

647 



implement higher level concepts, allowing the programmer to avoid reinventing the wheel with 
each new program. Software tools exist that will identify all occurrences of a set of cliches in a 
program.[16] Identification of the set of cliches commonly used by a programmer should prove useful 
as an identifying feature. 

3 Application and Difficulties 

It seems clear that there are many potential factors that could be examined to determine authorship of 
a piece of software. Ideally, this analysis would be used to identify a suspect, and then a search would 
be made of storage and archival media to locate incriminating sources. However, a more likely scenario 
would see a set of metrics and characteristics derived from the code remnant and then compared with 
representative samples written by the suspects. This comparison must be made with considerable care, 
however, to prevent complicating factors from producing either false positive or false negative indications. 

Richard Bailey, in his studies of authorship forensics, puts forth three requirements to be met before 
authorship classification is attempted: 

1. that the number of putative authors constitute a well-defined set; 

2. that there be a sufficient quantity of attested and disputed samples to reflect the linguistic habits of 
each candidate; 

3. that the compared texts be commensurable.[2, page 7] 

Although these requirements were intended for classification of prose, they would appear to be directly 
applicable to the area of software forensics. 

A likely complication, for instance, is the amount of code available for comparison. A small amount of 
suspect code (e.g., a computer virus) might not be sufficient to make a reasoned comparison unless very 
unusual indicators are present. 

Another complication is the reuse of code. If the author has reused code from her earlier work, or code 
written by others, the effect may be to skew any metrics derived from the suspect code. It might be enough 
to correctly indicate original authorship, but that might not identify the actual culprit. In some cases, code 
reuse may be obvious and it may be omitted from the comparison. However, there may be cases where that 
is not possible. Likewise, if the suspect code was written as part of a collaboration, the characteristics of the 
individual authors may be subsumed or eliminated entirely. 

A clever programmer, aware of this method, might disguise her code. This would probably involve 
using different algorithms and data structures than what she would normally use. Although this might 
eliminate the possibility of a match based on internal characteristics, it might also make the code more likely 
to fail in use. This should also make the programmer use more testing, and keep intermediate versions of 
the program that could later be matched against the suspect code. 

There is also the potential that the underlying application may have a strong influence on the overall 
style and nature of the code. For instance, if we are attempting to match characteristics of a small MS-DOS 
boot record virus, and the code we compare against is for a UNIX-based screen editor, it is unlikely that we 
would find much correspondence between the two, even if they were written by the same author. Therefore, 
we must be certain that we compare similar bodies of code. 

4 Concluding Remarks 

There are many differences between handwritten prose and computer programs. Handwriting samples are 
usually fixed in an instant, and prose is usually not incrementally developed, while a program evolves over 

648 



time. Multiple changes to a section of code as a program is developed can lead to a structure that the author 
would have been unlikely to create under other circumstances. 

Coding is also different in that code written by others is often incorporated into a program. Often, a 
program is not the result of the influence of only one author. We suspect that this would severely impair 
the selection of writer-specific code features without knowledge of the development of the program. 

Nonetheless, if there is a sufficiently large sample of code and sufficient suspect code, if there are unusual 
features present, and if we have correctly chosen our points of comparison, this method may prove to be quite 
valuable. Currently, similar ad hoc methods are used by instructors when they compare student assignments 
for unauthorized collaboration (cheating). The samples are usually not big, but the characteristics are often 
distinctive enough to make valid conclusions about authorship. Developing and applying more formal 
methods should only improve the accuracy of such methods, and make them available for more in-depth 
investigations. Ad hoc methods have already been developed in analyzing some cases, such as the Internet 
Worm incident[19] and the WANK/OILZ Worms,[14] but improvements are certainly possible. 

Not only would a formal method of software forensics aid in the determination of malicious code author- 
ship, it would have other uses as well. For instance, determining authorship of code is often central to many 
lawsuits involving trade secret and patent claims. The characteristics we have outlined in this paper might 
be used to determine if code is, in fact, original with an author or derived from other code. However, a 
rigorous mathematical approach is needed if any of these kinds of results are to be applied in a court of law 
(cf. [18]). 

We believe that if this approach is developed, it may also prove useful in applications of reverse- 
engineering for reuse and debugging. The analysis of code to determine characteristics is, at the heart, a form 
of reverse-engineering. Existing techniques, however, have focused more on how to recover specifications 
and programmer decisions rather than to determine programmer-specific characteristics (cf., [10]). 

Further research into this technique, based on examination of large amounts of code, should provide 
further insight into the utility of what we have proposed. In particular, studies are needed to determine 
which characteristics of code are most significant, how they vary from programmer to programmer, and 
how best to measure similarities. Different programming languages and systems should be studied, to 
determine environment-specific factors that may influence comparisons. And most importantly, studies 
should be conducted to determine the accuracy of this method; false negatives can be tolerated, but a 
significant number of false positives would indicate that the method is not useful for any but the most 
obvious of cases. 

Acknowledgments 

Our thanks to Richard DeMillo for suggesting some related references of interest. Thanks to both Ronnie 
Martin and Tom Longstaff for their comments. We are grateful to Gene Schultz for his comments, and for 
encouraging us to commit our long-standing interest in this area to paper. 

References 

[1] Alfred V. Aho and Jeffrey D. Ullman. Principles of Compiler Design. Addison-Wesley, 1978. 

[2] Richard W. Bailey. Authorship attribution in a forensic setting. In D. E. Alger, F. E. Knowles, and 
Joan Smith, editors. Advances in computer-aided literary and linguistic research. Proceedings of the Fifth 
International Symposium on Computers in Literary and Linguistic Research, pages 1-20,1979. 

[3] Louis J. Chmura and Henry F. Ledgard. COBOL with Style: Programming Proverbs. Hyden Book 
Company, Inc., Rochelle Park, NJ, 1976. 

649 



[4] B. J. Choi, R. A. DeMillo, E. W. Krauser, R. J. Martin, A. P. Mathur, A. J. Offutt, H. Pan, and E. H. 
Spafford. The Mothra tools set. In Proceedings of the 22nd Hawaii International Conference on Systems and 
Software, pages 275-284, Kona, HI, January 1989. 

[5] S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software Engineering Metrics and Models. Ben- 
jamin/Cummings, 1986. 

[6] The Cuckoo's Egg. Clifford Stoll. Doubleday, New York, NY, 1989. 

[7] Mark W. Eichin and Jon A. Rochlis. With microscope and tweezers: an analysis of the Internet virus of 
November 1988. In Proceedings of the Symposium on Research in Security and Privacy, Oakland, CA, May 
1989. IEEE-CS. 

[8] L.W. Cannon et. al. Recommended C Style and Coding Standards. Pocket reference guide. Specialized 
Systems Consultants, 1991. Updated version of AT&T's Indian Hill coding guidelines. 

[9] Joseph A. Fanciulli. The process of handwriting comparison. FBI Law Enforcement Bulletin, pages 5-8, 
October 1979. 

[10] M. F. Interrante and Z. Basrawala. Reverse engineering annotated bibliography. Technical Report 
SERC-TR-12-F, Software Engineering Research Center, University of Florida, January 1988. 

[11] Brian W. Kernighan and P. J. Plauger. The Elements of Programming Style. Mcgraw-Hill, second edition, 
1978. 

[12] V. Klement, R. Naske, and K. Steinke. The application of image processing and pattern recognition 
techniques to the forensic analysis of handwriting. In 1980 International Conference: Security Through 
Science and Engineering, pages 5—11,1980. 

[13] Henry F. Ledgard, Paul A. Nagin, and John F. Hueras. Pascal with Style. Hayden, 1979. 

[14] Thomas A. Longstaff and E. Eugene Schultz. Beyond preliminary analysis of the WANK and OILZ 
worms: A case study of malicious code. Technical Report UCRL-JC-108518, Lawrence Livermore 
National Laboratory, August 1991. 

[15] Frederick Mosteller and David L. Wallace. Applied Bayesian and Classical Inference: The Case of the 
Federalist Papers. Springer Series in Statistics. Springer-Verlag, 1964. 

[16] Charles Rich and Lina M. Wills. Recognizing a program's design: A graph-parsing approach. IEEE 
Software, 7(l):82-89, January 1990. 

[17] Charles Simonyi. Meta-programming: A software production technique. Byte, pages 34-45, September 
1991. 

[18] Herbert Solomon. Confidence intervals in legal settings. In M. H. DeGroot and S. E. Fienberg J. B. 
Kadane, editors, Statistics and the Law, pages 455-473. John Wiley & Sons, 1986. 

[19] Eugene H. Spafford. The Internet worm program: an analysis. Computer Communication Review, 19(1), 
January 1989. Also issued as Purdue CS technical report TR-CSD-823. 

[20] Eugene H. Spafford. Extending mutation testing to find environmental bugs. Software Practice and 
Experience, 20(2):181-189, February 1990. 

[21] Dennie Van Tassel. Program Style, Design, Efficiency, Debugging, and Testing. Prentice-Hall, Englewood 
Cliffs, NJ, second edition, 1978. 

650 



Some More Thoughts On The Buzzword 
"Security Policy" 

David M. Chizmadia 
Information Systems Security Organization, NSA 

Ft. George G. Meade, MD 20755-6000 
(410)859-4463 

Chizmadia@DOCKMASTER.NCSC.MIL 

Keywords 

Security Policy, Systems Development Process, Security Objectives, Security 
Policy Framework 

Abstract 

ft is nearlv axiomatic in the Information Security field that a 'security policy" is 
the basis for defining and assessing security in an information system Unfor- 
tunately, the precise meaning and characteristics of a security policy have never 
been defined by the community. This has led to a situation where individuals 
define "security policy" according to their background. This often makes com- 
munication about other basic information security issues more difficult than it 
has to be. Starting from the security policy frameworks proposed by Daniel 
Sterne and the ITSEC, this paper will propose a consolidated framework for se- 
curity policy development and application. It will then postulate some ways to 
use this framework to better ensure that information technology reliably sup- 
ports and reinforces the security objectives of an organization. 

Introduction 

The primary goal of this paper is to develop a practical and straightforward approach to using security 
policy to ensure that information technology reliably supports and reinforces an organization's secu- 
rity objectives. The approach taken is to synthesize a single set of definitions out of those proposed in 
Sterne and the ITSEC L'sing these definitions, the paper will then discuss how policy can be used to 
shape the specification and guide the implementation of the information technology employed by an 
organization to protect its resources. The paper concludes with an analysis of some issues that need 
further study and exposition. 

Background 

One of the basic tenets in the information security community is that one cannot produce a convincing 
argument that a system is either trusted or secure without an explicit security policy from which to ar- 
^ue. All existing security evaluation criteria [ 1, 4, 6| require a "security policy" as part of the docu- 
mentation that defines the entity being evaluated. However, as noted by Sterne |5|, security policy is 
used in these criteria at least two different ways. The Trusted Computer System Evaluation Criteria 
<TCSEC) [6| glossary defines a security policy as "The set of laws, rules, and practices that regulate 
how an organization manages, protects, and distributes sensitive information." Sterne makes the 
point that in this sense, security policy constrains the actions of people. In apparent contradiction to 
its glossary definition, the TCSEC Security Policy Control Objective identifies a security policy as the 
"..statement of intent with regard to control over access to and dissemination of information..." that 
"...must accurately reflect the laws, regulations, and general policies from which it is derived." [6, p. 

651 



59] In this sense, security policy constrains the actions of computer processes. Both concepts are valu- 
able to understanding security, but not when they are both identified by the same term. In [5], Sterne 
approached this problem by rigorously defining two types of security policy, Organizational and Auto- 
mated, that were consistent with the TCSEC usages and which reinforced the TCSEC concentration 
on confidentiality. A similar set of rigorous definitions is also present in the Information Technology 
Security Evaluation Criteria (ITSEC) [4, paras 2.8-2.17]. 

Current Definitions for Security Policy 

TheTCSEC 

The TCSEC provides two definitions for security policy. The first is the "formal" one found in the 
TCSEC glossary that defines the security policy as: 

"The set of laws, rules, and practices that regulate how an organization manages, pro- 
tects, and distributes sensitive information." [6, pg. 115] 

The second definition is found in the TCSEC chapter on Control Objectives. Here, the Security Policy 
Control Objective states: 

"A statement of intent with regard to control over access to and dissemination of in- 
formation, to be known as the security policy, must be precisely defined and imple- 
mented for each system that is used to process sensitive information. The security 
policy must accurately reflect the laws, regulations, and general policies from which it 
is derived." [6, pg. 59] 

The ITSEC 

The ITSEC presents a fairly detailed framework for the notion of security policy. This framework rec- 
ognizes three levels of security policy. The first level is that of the Corporate Security Policy, which 
consists of: 

"... (the) general security standards that apply to all systems within the organization 
and define the security relationship between the organization and the outside world. 
These standards can be considered to be the Corporate Security Policy: the set of laws, 
rules and practices that regulate how assets, including sensitive information, are man- 
aged, protected and distributed within the organization." [4, para 2.10] 

The ITSEC authors then proceed to further explain the nature and utility of the corporate security 
policy, as well as start linking it to the next level of security policy by writing: 

"The primary responsibility of the Corporate Security Policy is to provide the context 
for the identification of system security objectives. Identifying relevant corporate as- 
sets, general threats, and the results from risk analysis will assist in the identification 
of these system security objectives." [4, para 2.11] 

Security objectives are described in the ITSEC as the statements about desired security functionali- 
ty that explain why the organization wants the functionality. That is, they express how the Target of 
Evaluation (TOE) is expected to contribute to the overall security of the system in which it is used. [4, 
para 2.2] The security objectives are a central component of the system security policy, the next lev- 
el of security policy in the ITSEC. The System Security Policy is described in the following two para- 
graphs from the ITSEC. 

652 



"The System Security Policy specifies the set of laws, rules, and practices that regulate 
how sensitive information and other resources are managed, protected and distributed 
within a specific system. It shall identify the security objectives of the system and the 
threats to the system." ... "The System Security Policy shall cover all aspects of secu- 
rity relating to the system, including (the) associated physical, procedural and per- 
sonnel security measures.[4, para 2.9] 

"In the context of an individual system, the System Security Policy shall define the se- 
curity measures to be used to satisfy the system security objectives in a way which is 
consistent with the Corporate Security Policy. The security measures required by the 
System Security Policy will be implemented by a combination of security enforcing 
functions implemented by the TOE, and by physical, personnel, and procedural means. 
The System Security Policy shall clearly indicate the division of responsibility be- 
tween the security enforcing functions and the other means." [4, para 2.12| 

The lowest level of security policy as defined in the ITSEC is the Technical Security Policy, which is 
described by the following paragraph: 

"The IT (Information Technology) security measures of a System Security Policy may 
be separated from the remainder of the System Security Policy, and defined in a sepa- 
rate document: A Technical Security Policy. This is the set of laws, rules and prac- 
tices regulating the processing of sensitive information and the use of resources by the 
hardware and software of an IT system." [4, para 2.131 

Although the Technical Security Policy is the most specific form type of security policy identified in 
the ITSEC, the ITSEC also identifies something called the Product Rationale, which is described in 
the following paragraph: 

"The product rationale shall identify the intended method of use for the product, the 
intended environment for use of the product and the assumed threats within that envi- 
ronment. It shall include a summary of the products security features, and define all 
assumptions about the environment and the way in which the product will be used. 
This shall include personnel, physical, procedural and IT security measures required 
to support the product, and its dependencies on system hardware, software, and/or 
firmware not supplied as part of the product." [4, para 2.17] 

Daniel Sterne 

In [5], Daniel Sterne presents a framework for security policies that reinforces the notion of security 
policy presented in the TCSEC while at the same time making it more precise. The definitions of his 
framework are presented below to provide completeness in this background section. 

"Security Policy Objective - A statement of intent to protect an identified resource 
from unauthorized use. The statement must identify the kinds of uses that are regu- 
lated. The identified resource must be tangible or have some form that is tangible. A 
security policy objective is meaningful to an organization only if the organization owns 
or controls the resource to be protected. 

"Organizational Security Policy (OSP) - The set of laws, rules, and practices that regu- 
late how an organization manages, protects, and distributes resources to achieve speci- 
fied security policy objectives. These laws, rules, and practices must identify criteria 
for according individuals authority, and may specify conditions under which individu- 
als are permitted to exercise or delegate their authority. To be meaningful, these laws, 

653 



rules, and practices must provide individuals reasonable ability to determine whether 
their actions violate or comply with the policy. 

"Automated Security Policy (ASP) - The set of restrictions and properties that specify 
how a computing system prevents information and computing resources from being 
used to violate an organizational security policy. To be considered an ASP, there must 
exist a persuasive set of engineering arguments that these restrictions and properties 
play a key role in the enforcement of an organizational security policy." [5] 

The Security Policy Hierarchy 

The above definitions, and the rationales used to support them, were analyzed and compared to de- 
velop a framework for using security policy as a design and development tool. During the comparison, 
three distinct levels of security policy abstraction emerged. These levels and their relationship to the 
TCSEC, the ITSEC, and Sterne are shown in Figure 1. 

TCSEC ITSEC Sterne Proposed 
Levels 

Security Policy 
(Glossary) 

Corporate Security 
Policy 

Security Policy Objective 

Security Policy Objective 

Organizational Security 
Policy 

Corporate 
Vision of 
Security 

System Security Policy 
Corporate 

Philosophy for 
Secure Use of 

Security Policy 
(Control Objective) 

Technical Security 
Policy 

Automated Security 
Policy 

Information 
Technology 

Information 
Technology 

Product Rationale Security Services 

Figure 1: Comparison of Security Policy Hierarchies 

The first level is that of the corporate vision for security. At this level the concern is largely with tan- 
gible resources and takes the form of: restrictions on the individual actions and group interactions of 
people with respect to the use of corporate resources, the procedures for granting or revoking authori- 
zation to use resources, and the rules for tracking and reviewing compliance with the constraints and 
authority. The next level is that of the corporate philosophy for securely using information technol- 
ogy: that is, proactively using information technology support the vision for security. At this level, the 
corporate vision is interpreted to define both the role of information technology in enforcing the cor- 
porate vision and the responsibilities of the information technology users to properly use or maintain 
the technology. Finally, there is a level where the IT is viewed as a self-contained universe within 
which specific services are provided for controlling the interactions of the entities inhabiting that uni- 

654 



verse. The security policy at this level is unique in that it is tied to the IT rather than the organization 
and is therefore independent of the specific policy of an arbitrary organization. 

Starting with these three general levels of abstraction the following framework of definitions was de- 
veloped to provide a unified set of referents for discussing security policies. 

Corporate Vision of Security 

Security Policy Objective 
A statement of intent to protect an identified resource from unauthorized use. The statement 
must identify the kinds of uses that are regulated. The resource must be tangible, or be a deriva- 
tion of something that is tangible The statement should also identify why the resource is valuable 
and the effect of its unauthorized use on the organization. A security policy objective is meaning- 
ful to an organization only if the organization owns or controls the resource to be protected. 

This definition is drawn largely from the definition given by Sterne [51, except for two changes to 
make it more general and useful. The first change was to modify the restriction that resources have a 
tangible form. The intent of this requirement, i.e., linking the resource to the "real world" is desir- 
able, but the specific wording was overly restrictive. For example, in the case of a credit bureau, the 
main resources to be protected are the credit histories it maintains; however, each history is only in- 
formation - one can't really trace it back to the people or real money (neither are under the control of 
the credit bureau). The second change supports the ITSEC notions of risk analysis and threat identifi- 
cation by providing a clear starting point for assigning risk and identifying threats. This framework 
does incorporate Sterne's view that the organizational policy is derived from the security policy objec- 
tives , rather than the ITSEC view that the reverse is true. 

Organizational Security Policy (OSP) 
The set of laws, rules, and practices that regulate how an organization manages, protects, and dis- 
tributes resources, to achieve specified security policy objectives. These laws, rules, and practices 
must identify criteria for according individuals authority, and may specify conditions under which 
individuals are permitted to exercise or delegate their authority. To be meaningful, these laws, 
rules, and practices must provide individuals reasonable ability to determine whether their ac- 
tions violate or comply with the policy. 

The words of this definition are the same as those for Sterne's Organizational Security Policy, which 
capture the essence of the ITSEC definition for a corporate security policy, with the caveat noted 
above about the different perspectives on the security objectives. This framework retains the perspec- 
tive of both Sterne and the ITSEC that the Organizational Security Policy is concerned with the rela- 
tionships between people, the operating practices of the organization, and the "real" resources that are 
important to the organization. 

Corporate Philosophy for Securely Using Information Technology 

Once an organization has identified its security policy, it may then find itself in a situation where 
some aspects of the management, protection, and distribution of its resources are actually done with 
the assistance of information technology. At this point a top-down approach to security suggests that 
the organization should develop another level of policy that sets out corporate interpretation of the or- 
ganizational security policy with respect to how information technology will be used across the organi- 
zation such that security is not compromised. This level of policy is defined now as the: 

Organizational Security Policy for Information Technology (OSPIT) 
Interpretations of the (sub)set of laws, rules, and practices in the OSP that are implemented or en- 
forced with the aid of information technology. These interpretations must address: how specific 
aspects of resources defined in the security policy objectives are represented electronically, the 

655 



role of the information technology used to protect those electronic representations, the additional 
non-technical procedures (e.g., physical, procedural and personnel security measures) that lead to 
the appropriate use of the information technology to accomplish the identified security objectives, 
and the operation and maintenance of the information technology. 

The OSPIT is closely akin to the ITSEC Corporate Security Policy, which has a definite focus on the 
information technology aspects of security. It is important to note that the OSPIT is developed with a 
clear view towards providing cost-effective protection for corporate resources. As such the final 
OSPIT will reflect a practical approach to trading off procedural approaches to security versus auto- 
mated ones based on relative cost and effectiveness. 

In a moderately large to large organization, there may be several distinct configurations of informa- 
tion technology, called systems in the ITSEC and information technology systems in the remainder 
of this paper. These information technology systems could be used to manage, protect, or distribute 
different types of information in support of different subsets of the security policy objectives. For ex- 
ample, a manufacturing company may have separate systems for assembly line control, accounting, 
and office automation. To ensure that each information technology system supports the appropriate 
organizational security objectives, there must be a clear statement that relates the specific information 
resources that it controls back to specific objectives and policy directives. This statement might take 
the form of an interpretation of the OSPIT for the information technology system. Such a statement is 
defined now as the: 

Information Technology System Security Policy {ITSSP) 
The set of restrictions and properties that both specify how a specific information technology sys- 
tem prevents its storage, communications, and computing resources from being used to violate an 
organizational security policy and describe the complementary procedures that people using the 
ITS must follow to ensure that the information the information technology system uses to make 
decisions corresponds to reality. The ITSSP must be accompanied by a persuasive set of engineer- 
ing arguments that its restrictions and properties play a key role in the enforcement of an organi- 
zational security policy. 

Information Technology Security Services 

The ITSSP corresponds to Sterne's Automated Security Policy (ASP), in that it is the link between a 
specific ITS and the organizational security objectives that it supports. Sterne identifies the ASP as 
the lowest level of security policy, on the premise that policy in the absence of purpose is not very use- 
ful. This paper takes a slightly different view. 

For compelling economic reasons, most information technology systems today are comprised primarily 
of commercially available products. The vendors of these products identify general market segments 
that have similar requirements and develop a product that directly satisfies most of those require- 
ments and can be tailored to satisfy the rest. The performance characteristics of these products are ex- 
pressed in general rather than specific terms. For instance, a CPU's speed is measured in instructions 
per second rather than time to recalculate the Bank of America's quarterly earnings spreadsheet. The 
same is true for the security features of products. The security characteristics of the product are ex- 
pressed in terms of the abstract resources it controls (e.g., files, network connections, database views, 
spreadsheet cells, document paragraphs, etc); the types of control it provides (e.g., read, execute, write, 
delete, etc); and the assumptions about the environment in which the product exists that must hold 
true for the controls to be effective. This expression of a product's security characteristics is defined 
here as the: 

Information Technology Protection Policy (ITPP) 
The set of restrictions and properties that apply to the allocation and use of the storage, comput- 

656 



ing, and communication resources defined at the external (e.g., user, network physical port, sys- 
tem call, etc) interface to a specific configuration of information technology. 

The term Protection Policy was chosen deliberately in order to distinguish between the protection fea- 
tures provided by the product for identified electronic resources and the actual security that those fea- 
tures may provide in a specific environment (i.e., with respect to a specific ITSSP). The ITPP corre- 
sponds closely to the Product Rationale of the ITSEC [4] or the Technical Security Policy of the TDI 
m. 

Using Security Policy In The System Development Process 

The fundamental objective of the framework developed here is to encourage the appropriate use of ab- 
straction in the system development process. A potential trap in system development is to "jump 
ahead" of oneself and go into too much detail for the effort at hand. Systems acquisitions are often 
driven by a desire for the technology most recently announced in major computer magazines, rather 
than a careful identification of current and future business activities followed by a detailed, and re- 
peatable, analysis of which activities can be effectively automated. 

A short-circuited systems development process often results in the use of one of two opposite, and 
equally undesirable, approaches to information system security. The first, and most common, ap- 
proach is to treat security as an afterthought and go buy the fastest-smallest-newest technology avail- 
able: disregarding the presence of, e.g., time-sensitive, national security information on the system 
with users at three levels of clearance. The second approach is to sieze the moral high ground and 
mandate high-grade security, even if the system is essentially just the parts catalog for army uni- 
forms. In both cases, the purchase decision is being made on the basis of desire rather than need. 

Although security policies are not the final solution to this problem, they do provide both management 
and technical personnel with a tool for identifying and tracking the fundamental security properties 
needed in the system. They also provide a tool to properly assign both responsibility and accountabil- 
ity for security in the organization as a whole and in the organization's information technology sys- 
tems specifically. 

Figure 2 shows how the framework proposed here relates to the general approach to system develop- 
ment advocated by most computer professionals. Any system development starts with a mission, or 
more specifically a perceived need. In the realm of security, this need corresponds to the security policy 
objectives, which are themselves an expression of the security needed for the mission. The mission 
sponsors then proceed to identify the mission requirements in terms of everything required to perform 
the mission and the approach to accomplishing the mission. This corresponds to the organizational se- 
curity policy, which lays out all of the responsibilities for security in accomplishing the mission. Next, 
the mission sponsors identify a role for information technology in the mission and develop a plan for 
its use in the context of the mission. This phase of system development corresponds to the both the Or- 
ganizational Security Policy for information Technology and the Information Technology System Secu- 
rity Policy. The OSPIT and the ITSSP may be one in the same if only one system is required to accom- 
plish the mission. If there are multiple systems employed to accomplish the mission, however, there 
will be gradations of management that must be reflected by the security policies. Finally, actual tech- 
nology is procured to accomplish the automated aspects of the mission. This technology may be 
general-purpose, commercially available technology or technology that is designed and built specifi- 
cally for the mission. In either case, there should be a corresponding Information Technology Protec- 
tion Policy that describes what shared resources the technology manages and how it provides the 
means to protect those resources from being shared unintentionally. The final step in the system de- 
velop process is to integrate the technology into the mission. In the context of the framework, there is 
no need to have a separate policy for this level because the primary purpose of all of the policy levels 
identified is to make sure that there are no surprises when this step is completed. 

657 



STAGES OF SYSTEM DEVELOPMENT LEVELS OF POLICY 

Identify Mission Security Policy Objectives 

Identify Requirements Organizational Security Policy 

Organizational Security Policy for 

Allocate Requirements to manual and 
Information Technology 

automatic procedures and processes Information Technology 
System Security Policy 

Procure Technology Information Technology 
Protection Policy 

Integrate Technology into mission 
activities 

Figure 2: Relationship of the Policy Framework to the System Development Process 

This framework can also be understood in the context of organizational management, as well as sys- 
tem development. From this perspective, the expression of the Security Policy Objectives and the Or- 
ganizational Security Policy is the responsibility of the highest tiers of management in the organiza- 
tion, since it establishes a corporate statement of the resources that are important and the individual 
responsibilities that each member of the organization has for protecting those resources. From a man- 
agement standpoint, the effort applied is a useful management tool in and of itself, since it causes the 
managers who do it to consider carefully the basic goals and mission of the organization. 

Once developed, the OSP becomes the requirements document for the managers in the organization 
who are charged with identifying the aspects of the organizational operations that can be cost- 
effectively augmented with information technology. As part of their planning and analysis activities, 
they would either produce an Organizational Security Policy for Information Technology (if there are 
different types of technology used to address different business objectives) or an Information Technol- 
ogy System Security Policy (if all of the organization operates within one ITS). When there is an 
OSPIT, it becomes the requirements document for the managers in charge of information technology 
for each of the unique business units, which would in turn develop the ITSSP for their ITS. 

Properly formulated, the ITSSP is the specification for the security requirements needed in a specific 
ITS. The purpose of a good specification is to tell the developer or maintainer of an ITS what is needed, 
without dictating how to meet the need. Since the ITSSP consists of a set of restrictions, which pro- 
vide a basis for determining the boundary of the ITS, and a set of properties, which identify the test- 
able requirements that must be met at that boundary, it should (in theory) provide the perfect format 

658 



for specifying security requirements. The major impediment to this use is the absence of a well-known 
and precise format for presenting and interpreting an ITSSP. As will be observed again in the sum- 
mary, this is a problem shared by all of the types of security policy and is one of the most important 
topics needing further study. 

Postulating for the moment that one has developed a suitably concise and complete ITSSP, the final 
piece of the system development puzzle is to actually build an information technology system that sat- 
isfies the ITSSP. In the current environment, this is largely a matter of art: with the final product de- 
pending to a great extent on the experience and dedication of the individuals developing the system. 
The job involves taking the ITSSP, ensuring that the hardware and software that is developed or as- 
sembled in response to other mission requirements enforces the required security constraints, and pro- 
ducing a convincing argument that it all works together effectively. 

Part of this development effort involves the derivation of an architecture for the technology that will 
satisfy the requirements. The components of this architecture will each satisfy a subset of the require- 
ments for the ITS. Some of these components will have a responsibility for the overall ITS security. 
Often, there exist commercial products that provide some or all of the services needed. When this is 
the case, it would be extremely helpful to the developers if there were some way they could compare 
the coverage and the strength of the security services provided by the various "commercial off-the- 
shelf products that are under consideration. The ITPP is a tool to satisfy this need by providing a 
statement of the product's security features, phrased in a fashion that corresponds to the requirements 
that the overall ITS must satisfy. 

One of the goals of the TCSEC [61 was to provide exactly this service. Unfortunately, many feel that 
this benefit has not been realized. One reason for this is perhaps the mismatch between the policies 
evaluated with respect to the TCSEC and those required by specific systems. In the terms defined 
here, it is clear that the TCSEC evaluations done under the auspices of the NCSC are with respect to 
an ITPP, since they are tied more closely to the technology than to an operational mission. However, 
the words in the TCSEC imply that the policies evaluated will be ITSSPs. 

An additional complaint about the TCSEC is that even when one understands the type of policy being 
evaluated, the range of such policies allowed by the TCSEC is too limited. More recent criteria [1, 4| 
have sought to address this problem. The ITSEC [4] approach to the problem is to allow a product ven- 
dor to define the product policy and show that the features provided enforce that policy. The CTCPEC 
[1| approaches the problem by defining specific requirements for the various security services possible 
in current technology and then letting a product vendor define the policy that justifies those services. 

It can be observed that all three criteria share in common the characteristic that they do not provide a 
standardized format for the ITPP associated with evaluated products, nor do they require that these 
policies be considered part of the user documentation. This leads to the conclusion that any criteria 
lacking of these two requirements will not satisfy its primary customers, because they either will not 
get the ITPP at all or will not get it in a form that is easily compared with similar products. 

Conclusion 

Topics For Further Study 

As was noted above, rigorously defining a framework for different levels of security policies only solves 
part of the problem. Unless each level of policy are expressed in a way that facilitates an understand- 
ing of the underlying requirements, nothing is gained. Developing guidance for the derivation and ex- 
pression of each level of policy is the most crucial future effort in this discipline. A subsidiary effort 
that could be done in a shorter timeframe would be to identify some of the general classes of resources 
and their associated types of use that are commonly found in each type of policy. This would be a natu- 

659 



ral side-effect of the general policy expression research and would allow organizations to start express- 
ing at least their security policy objectives in a consistent fashion. 

Another major topic, primarily of interest to the Federal Government initially, is to relate each type of 
security policy to the formal systems acquisition process that has been defined for Federal procure- 
ments. As the guidance for expressing policies becomes more concrete, it could then be institutional- 
ized into this process. 

Summary 

This paper has reviewed the contents of two major information technology security evaluation criteria 
- the TCSEC and the ITSEC - and the work of Daniel Sterne regarding security policies and has syn- 
thesized a security policy framework that incorporates all of the ideas found in the other works. This 
framework was then related to the various stages of the generic system development process. Finally, 
a set of topics that require further study and exposition were identified. 

References 

[1] Canadian Trusted Computer Product Evaluation Criteria (Version 2.1 e), Canadian System 
Security Centre Communications Security Establishment Government of Canada, December 
1990. 

[2] Computer Security Policies: Challenges And Prospects, Eugene V. Epperly, Proceedings of the 
Fifth Seminar on the DoD Computer Security Initiative (pp. 99-137), May 1982. 

[3] Evaluation, The DoD Certification Process, And Its Relation To The Trusted Computer System 
Evaluation Criteria, William Neugent, Proceedings of the Sixth Seminar on the DoD 
Computer Security Initiative (pp. 83-86), November 1983. 

[41 Information Technology Security Evaluation Criteria—Version 1.2, Senior Officials Group— 
Information Systems Security (SOG-IS), an EC advisory group, June 1991. 

[5] On The Buzzword "Security Policy," Daniel F. Sterne, Proceedings of the 1991 IEEE Computer 
Society Symposium on Research In Security And Privacy (pp. 219-230), May 1991. 

[6] Trusted Computer System Evaluation Criteria, United States Department of Defense 5200.28- 
STD, December 1985. 

[7] Trusted Database Management System Interpretation of the Trusted Computer System 
Evaluation Criteria, National Computer Security Center, NCSC-TG-021 Version-1, April 
1991. 

660 



STANDARD CERTIFICATION - PROGRESSION 

Captain Charles R. Pierce 

Air Force Cryptologic Support Center (AFCSC/SRP) 
San Antonio, Texas 78243-5000 

ABSTRACT 

This paper presents the results of the first year's efforts 
of the Certification Working Group (CWG) formed under the Joint 
Logistics Commanders' (JLC) Information Systems Security 
(INFOSEC) Management Panel (IMP). The IMP CWG is developing a 
standard process for certifying computer systems. It is also 
developing education and training requirements for program 
managers and system developers. In the last year the CWG has 
developed a process for integrating risk management, 
certification, trusted product evaluations, and accreditation 
into the system life cycle. It has proposed training standards 
for systems' developers and education requirements for program 
management personnel. These standards are being translated into 
courses and curricula by a corollary Security Education and 
Training Working Group (SETWG). 

STANDARDIZED CERTIFICATION 

A paper, Standardized Certification [1], presented at the 
14th National Computer Security Conference proposed the 
development of a standard for DoD Information Systems Security 
(INFOSEC) certifications. It presented some problems existing 
with current certification methodologies and some recommendations 
to remedy those problems. Among those recommendations was a 
certification standard.  The paper recommended the standard: 

1. Formulate a strategy for developing the standard 
certification process. The strategy would include plans for 
developing the process, acquiring the resources to implement it, 
education and training for personnel with certification 
responsibilities, proficiency standards for those personnel, and 
guidance for implementing the process in an operational 
environment. 

2. Encompass all types of systems, including various small, 
embedded, and other "unique" types of systems. 

3. Highlight when users or developers must make decisions to 
strictly apply the process or that a point has been reached where 
the process could not be adequately applied and a risk assumption 
decision must be made. 

4. Clearly define who each process step applies to (user, 
developer, both, etc.). The process should contain some 
specifics not currently addressed, such as the life cycle 
maintenance of trusted software. 

661 



5. Describe where within the process various guidance such 
as NCSC Criteria or Technical Guidelines is to be applied and 
how. 

6. Describe how, why, when, and where to use and accept 
other-agency evaluations, such as NCSC evaluations, or 
certifications from other DoD components. 

7. Define when products from outside the certifying agency 
are specifically required, such as NCSC evaluated TCBs. Also 
included would be advice as to what documentation to use or 
require from those other evaluations, i.e., commercial documents 
or system unique documents. 

8. Describe the applicability of DoD documents, service 
regulations and technical guidelines, particularly for contracted 
developments. 

9. Must use currently available resources for implementing 
the process. 

10. Must be mandated as a standard for all systems by 
inclusion in agency policy and regulations. Include the process 
in procurement policy, security certification, accreditation, and 
technical guidelines. Each program, off-the-shelf standard 
system, etc., must include a system-tailored process description 
in their security plan. 

The paper also recommended that other guidance be completed 
to complement the certification standard. This would include how 
to use other agencies' evaluations as supporting certification 
documentation and defining responsibilities for recurring life 
cycle reviews and recertifications. Evaluation criteria should 
be developed or expanded beyond the DoD 5200.28-STD, e.g., for 
embedded systems, complex systems, real time systems, the Trusted 
Database Interpretation (TDI) [2], the Trusted Network 
Interpretation (TNI) [3], and applications software. A 
subsequent activity is to complete translation of these criteria 
into acquisition specifications formats and operational 
implementation guidance. 

The paper encouraged the services and comparable agencies to 
improve their capabilities to provide certification support to 
systems (existing and developmental) by developing a program to 
educate people in multiple INFOSEC disciples, i.e., COMSEC, 
TEMPEST, etc. 

Another Joint Logistics Commanders sponsored group, Computer 
Resources Management (CRM), hosted the San Antonio I workshop 
with one of its security goals to identify methods to facilitate 
certification and accreditation of multilevel systems and tools 
for certifying software systems. The products requested by the 
CRM were to facilitate accreditation and provide guidance for 
contracting security requirements. [4]  The Security Panel IV 

662 



report from the San Antonio I workshop recommended the 
development of certification standards as an integral part of 
mission critical computer resources and automated data processing 
systems development. The panel also recommended that policies be 
established for implementing the standards and education and that 
training be required for those responsible for security 
throughout  a  system's   life  cycle.    [5] 

THE CERTIFICATION WORKING GROUP 

Concurrent with the Standardized Certification paper's 
development and the San Antonio I workshop, the IMP CWG was 
formed. The IMP CWG is chartered to "...maximize the 
coordination and sharing of certification techniques, 
information, equipment, automated tools, and other resources in 
service to determine the best criteria, methodologies, and 
procedures to standardize the certification process across the 
military   services   and  DoD  agencies." 

The IMP CWG was to initially produce a strategy for 
developing a certification standard process. The process was to 
be flexible enough to address the full range of system types and 
information sensitivity from unclassified to the highest 
classified and multi-compartmented information. It would address 
every life cycle stage of the system or network to be certified 
and the complexity of the system or network architecture to be 
certified. At a minimum, stand-alone or multi-user 
architectures, local area networks (LANs) and wide area networks 
(WANs)   were   to  be   addressed.    [6] 

The Standardized Certification paper was not intended to be a 
foundation for the IMP CWG, but it's apparent they have similar 
goals. The IMP CWG first met in April of 1991 and developed the 
strategy for meeting its charter requirements. Figure 1 
represents the strategy plan and actions status to date. The IMP 
CWG has grown to include widespread membership (Figure 2) and 
meets at least quarterly, but lately more often since it is 
entering   the  most   productive   stages   of   the   strategy  plan. 

THE   STANDARD  CERTIFICATION   PROCESS 

The first product developed by the IMP CWG was an 
identification of the key concepts and objectives [7] to guide 
the standard process development. This document also provided a 
subset of the standard terminology and definitions the IMP CWG 
would use during the process development. The first major point 
of agreement was to endorse the initial use of the NSTISS 
Instruction No. 4009 [8] as a standard INFOSEC glossary. NSTISSI 
No.   4009   defines   certification  as   a: 

"Comprehensive    evaluation    of    the    technical    and 
nontechnical   security   features   on   an   AIS   and   other 
safeguards,    made    in    support   of    the   accreditation 
process,   to   establish   the   extent   to   which   a   particular 
design   and    implementation   meets   a   set   of    specified 
security  requirements." 

66 3 



Action Begin End 

1. Identify key concepts and 31 Jul 91 11 Feb 92 
objectives, provide definitions 

2. Identify IMP CWG needed resources 13 Sep 91 19 Nov 91 

3. Define current risk management 19 Nov 91 20 Aug 92 
process 

4. Define current evaluation process 19 Nov 91 29 Apr 92 

5. Define current accreditation 19 Nov 91 20 Aug 92 
process 

6. Develop integrated process 4 May 92 Apr 93 

7. Define related processes revision 4 May 92 Apr 93 
requirements 

8. Define recommended certification 11 Feb 92 Apr 93 
standards and policy 

9. Develop certification standard 11 Jun 92 Apr 93 

10. Develop policy recommendations 11 Jun 92 Apr 93 

11. Develop process tailoring 11 Jun 92 Apr 93 

12. Develop marketing program 5 Feb 92 20 Aug 92 

13. Identify training requirements 11 Feb 92 20 Aug 92 

14. Identify implementation 11 Jun 92 20 Aug 92 
resources 

Figure 1.  IMP CWG Development Schedule 

The Standardized Certification paper recommended the 
development of a central point of sharing certification 
information and experience, including worked systems and lessons 
learned. Since this function was part of the NCSC's original 
charter, it agreed that this would be a logical function for it 
to eventually maintain. The IMP CWG decided to perform a similar 
collation of this information and temporarily maintain it until 
the standard was complete, then transfer the library to NCSC for 
life cycle maintenance. Reference to and use of the central 
library would become part of the certification process. 

To define the current state of certification in DoD, the IMP 
CWG began by defining processes relative to certification, i.e., 
risk management, technical evaluation, and accreditation, taking 
the "best" from existing methodologies.  These processes will be 

664 



Air Force Cryptologic Support Center, San Antonio TX 
Sacramento Air Logistics Center, McClellan AFB CA 

Air Force Materiel Command, Wright-Patterson AFB OH 
Defense Investigative Service, Washington DC 

US Marine Corp, Quantico VA 
Electronic Systems Center, Hanscom AFB MA 

Joints Chiefs of Staff, Washington DC 
US Navy/Naval Electronic Security Center Washington DC 

National Computer Security Center, Ft George G. Meade MD 
National Security Agency, Ft George G. Meade MD 

Naval Warfare Systems Command, Washington DC 
Naval Electronic Systems Security Center, Washington DC 

US Army/HQ CECOM, Ft Monmouth NJ 
Mitre Corporation, Bedford MA 

National Institute of Standards and Technology, Gaithersburg MD 

Figure 2.  IMP CWG Membership 

refined into consistent flows and then integrated into the DoD 
development life cycle as defined in DoD Instruction 5000.2 [9]. 
Each process description includes the activities involved in that 
process, their development or product delivery timing in the life 
cycle, and the responsible agent for its production. After the 
"best of current technology" was defined, it is being integrated 
into the standard certification process. 

In addition to the best of current technology, the process is 
including the best of current guidance development efforts. At 
appropriate points the user will be directed to use this type of 
guidance. Among these products are the NCSC-TG-24, An 
Introduction to Procurement Initiators on DoD Computer Security 
Requirements, Volume I-IV (Draft) [10], for developing 
specifications for trusted products acquisitions or AFSSM 5024, 
Security in Acquisitions (Draft) [11], for developing a Request 
for Proposal (RFP) for secure systems. Among the mandatory items 
a program will be required to develop are definitive system 
security policies, DAA-validate security requirements, 
certification and accreditation plans, risk analysis plans, and 
security test and evaluation plans. Ideally, if a Program 
Management Office (PMO) tailors the standard to meet its specific 
program roles, responsibilities, and schedule the result will be 
a consistent master certification and accreditation plan. 

Although they are not part of the standard itself, other 
products will accompany it. Training requirements for relevant 
positions are being provided to the SETWG who is developing 
education curricula and training standards matched to the 
process. The first source for the resultant education and 
training should be the DoD schools such as the Defense Systems 
Management College, the Air Force Institute of Technology, and 
the various training schools. Academia is encouraged to use the 
curricula for developing similar training and undergraduate and 
graduate programs. 

665 



Also accompanying the standard will be tailoring guidance to 
match the process to system types other than the standard AIS. 
This includes such systems as embedded weapon systems, completely 
commercial-off-the-shelf (COTS) products, and integrated trusted 
and untrusted components. The tailoring guidance will provide 
for out of life cycle entry into the certification process, such 
as for a completely COTS purchase. This type of program could 
pass from requirements definition and enter the life cycle in the 
Production and Deployment [9] life cycle phase. The affected 
PMO, or equivalent organization, must know how to "catch up" such 
activities as security policy development or security testing 
that normally would have been done in earlier life cycle phases. 
The tailoring guidance will also address embedded and complex 
system issues. These include integrating products with varying 
certification schedules or trust levels into a system level 
certification process. 

The standard will not provide guidance for matching various 
development models, such as the spiral model, to the process. 
This will be left to others, as will matching various 
certification implementation methodologies. The standard will be 
flexible enough so that most applied methodologies will satisfy 
it. All types of risk analysis tools, acquisition strategies, 
certification methodologies, or maintenance plans should fit. 

The first edition of the standard process has been produced 
for internal review by the IMP CWG. It outlines the procedures 
and products that will be developed in each development phase. 
It provides mandatory points (primarily the standard development 
Milestones) by which these products must be available for DAA 
review and approval. To encourage the process' use, the standard 
uses the presentation style of DOD Instruction 5000.2. Delivered 
with the final process will be policy recommendations, including 
what changes should be made to existing service or agency 
policies to facilitate the process' implementation. 

The process standard incorporates recommendations from many 
sources in addition to those mentioned above. Several features 
of the process are derived from the above recommendations. Among 
these are fully defined roles and responsibilities. These are 
allocated to position tiles, such as Program Manager or the 
Designated Approving Authority (DAA). It's impractical to be too 
specific because it's desired to make the process highly 
adaptable. For instance, in some cases, such as a small 
off-the-shelf purchase, all positions and responsibilities may be 
allocated to a single individual. 

One of the most important development activities is early DAA 
designation. In many current developments the DAA was sometimes 
not designated until well into the development life cycle. Many 
critical decisions were made by someone other than the real DAA, 
leading to subsequent misunderstandings or problems. The 
standard clearly defines DAA appointments and responsibilities. 

666 



Early in 1992, the JLC directed the IMP to develop a 
marketing program for IMP developed products, including those 
from the SETWG as well as the IMP CWG. The IMP CWG was passed 
this direction and developed a marketing strategy that included 
conference presentations and articles for various publications 
with INFOSEC interests. Additionally, IMP CWG members will 
undertake efforts to keep their own agencies informed on the IMP 
CWG's progress and should be contacted for the current status of 
the standard's development. 

The Director of Information System Security in the Office of 
the Deputy Assistant Secretary of Defense (Counterintelligence & 
Security Countermeasures) expressed a desire that standard 
certification and accreditation policy be issued the fall of 
1992. The ODASD (CI&SCM) leads the Defense-wide Information 
Systems Security Program (DISSP), a joint effort of the National 
Security Agency, the Defense Intelligence Agency, and the Defense 
Information Systems Agency to develop standards for INFOSEC. The 
DISSP recommended that the IMP CWG merge its efforts with those 
of a similar group formed at NSA and form a DoD level working 
group. This merger began in May of 1992. The IMP CWG 
recommended to the JLC that policy development responsibility be 
passed to the DoD group as soon as possible. Development of the 
standard process will continue under the IMP CWG because it had 
responsibility to meet its JLC milestones and was well along its 
production schedule. IMP products will be harmonized with and 
passed to the DoD working group for enclosure in its processes. 

THE FUTURE 

The tailoring guidance for the process is being adapted for 
all types of systems and will be flexible enough to be modified 
for any type of development or acquisition. This includes 
everything from the smallest real time embedded processors to the 
largest integrated networks. It will fit within any acquisition 
strategy, e.g., either totally off-the-shelf systems or with 
lengthy development cycles. 

The range of systems and information sensitivity being 
addressed involves that from totally unclassified to sensitive 
information with multiple compartments. The process will be 
simple enough to address common office automation. It will be 
complex enough to provide for integrating intelligence processors 
into collateral information systems in multilevel modes. The 
intent is to provide some guidance on the level of effort to be 
expended in the certification effort. 

This proposed flexibility and adaptability is provided by 
developing a comprehensive model and then providing the 
instructions for tailoring it to a wide variety of environments. 
The IMP CWG is seeking prototypes, working systems, developments, 
or worked examples for applying the process during its evolution. 
The standard will not be proposed as policy without sufficient 

667 



guidance for tailoring and implementing it. The guidance 
provides a program manager with the ability take the full process 
and adapt it to his program's particular schedule, staffing, and 
other requirements or constraints. 

One of the most difficult aspects of the standard will be to 
define criteria for across-agency acceptance of certifications. 
A simplistic view states that if a system was developed and 
certified according to the standard, the certification should be 
acceptable to other DoD agencies. The accepting agency must 
still review modification may to the standard process and the 
methodology used to implement the process. The data base of 
lessons learned, etc., could with time become a de facto set of 
"approved methodologies," based on experience. 

Experiences gained coupled with the education and training 
products should lead to one of the IMP'S longest term goals, 
producing a cadre of certified certifiers. These certifiers 
would review the efforts of system developers and provide 
standard certification assurances without performing the actual 
certifications themselves. Standards for certification 
performance will be coupled with the technical standards to then 
produce truly standard certifications. 

A draft of the proposed standard should be available for 
community review by late 1992. The draft will be a minimum 
process with the intent to stay that way. There will be 
temptation to expand the standard to include points from various 
favored methodologies. This will be avoided so that each of 
these methodologies can fit in the standard. The immediate 
follow-on effort will be to develop language for implementing the 
standard in contracts. 

CONCLUSION 

The IMP CWG's goal is to have substantially completed its 
work on the certification standard by the middle of 1993. The 
ultimate product is to be submitted as either a DoD or Military 
Standard. The accompanying guidance could be either a DoD level 
instruction or manual. Recommendations on collateral policy 
changes will be made by working group members to their respective 
DoD components. We look to industry and the academic and 
training communities to develop programs for spread knowledge 
about the standard. The vendor community will be encouraged to 
develop models can that be adapted to the standard as well as 
various methodologies for implementing it. 

668 



REFERENCES 

1. Pierce, C.R., Standardized Certification, Proceedings of the 
14th National Computer Security Conference, 1991. 

2. NCSC-TG-21, Trusted Database Management System Interpretation 
of Trusted Computer System Evaluation Criteria, 22 August 1990. 

3. NCSC-TG-05, Trusted Network Interpretation of Trusted 
Computer System Evaluation Criteria, 31 July 1987. 

4. San Antonio I Handbook, DoD Software for the 1990s, 30 
November 1990. 

5. San Antonio I Software Workshop Proceedings, "DoD Software 
for the 1990s," 11 December 1991. 

6. Charter for Joint Commanders Group Communications-Electronics 
COMPUSEC Implementation Management Panel (CIMP) Certification 
Working Group (CWG), 6 March 1991. 

7. Smyth, Mike, Certification and Accreditation (C&A): Goals and 
Objectives, Key Concepts, and Terminology, Computer Security 
(COMPUSEC) Implementation Management Panel Certification Working 
Group, 24 September 1991. 

8. NSTISS Instruction No. 4009, National Information Systems 
Security (INFOSEC) Glossary, National Security Telecommunications 
and Information Systems Security Committee (NSTISSIC), 
5 June 1992. 

9. DoD Instruction 5000.2, Defense Acquisition Management Policy 
and Procedures, 2 3 February 1991. 

10. NCSC-TG-24, An Introduction to Procurement Initiators on DoD 
Computer Security Requirements (Draft), 25 October 1991. 

11. AFSSM 5024, Security in Acquisitions (Draft), 1 April 1992. 

669 



A TAMPER-RESISTANT SEAL 
FOR TRUSTED DISTRIBUTION AND 

LIFE-CYCLE INTEGRITY ASSURANCE 

Mark Bianco 
Hughes Aircraft Company 

P.O. Box 3310 
Fullerton, CA. 92634 

(714) 441-9694 

ABSTRACT 

A trusted computer system consists of an array of software and hardware 
mechanisms that implement and enforce the system's security policy. These 
mechanisms must therefore resist tampering by adversaries who wish to modify 
or replace specific elements to facilitate attacks against the system. Software 
integrity can be verified with cryptographic checksums, but techniques for 
verifying the integrity of hardware elements to the same high level of 
confidence do not exist. Even the recently released Integrity In Automated 
Information Systems supplement fails to adequately address the problems of 
verifying systems integrity at the hardware level. Physical protection is 
therefore commonly used to restrict and/or detect access to the equipment, and the 
Guide To Trusted Distribution suggests a variety of techniques for implementing 
such mechanisms. However, they may not be sufficient to prevent a motivated 
adversary from successfully attacking critical elements during distribution 
between sites or during operational use. 

This paper presents another method for detecting unauthorized access that offers 
a greater level of protection than the methods currently available. By combining 
random number generation and asymmetric encryption, an electronic seal can be 
implemented that cannot be forged, bypassed, or replaced. Even legitimate 
parties will not be able to access the protected equipment without leaving 
evidence. 

Keywords: Continuous protection, hardware integrity, trusted distribution, 
trusted facility management, configuration management. 

INTRODUCTION 

One of the features required by the Trusted 
Computer Security Evaluation Criteria 
(TCSEC) at Division A is trusted distribution of 
all software and hardware elements1 of the 

• The term "hardware element" is used to 
represent individual components (e.g., 
integrated circuits), circuit boards (e.g., video 

Trusted Computing Base [1]. The intent is to 
prevent an adversary from undetectably 
tampering with the system or its components 
during shipment from one site to another, or 
from replacing them with counterfeit versions 
that may contain hostile functions.   Software 

or disk drive controllers, etc.), and subsystems 
(e.g., video monitors, tape backup systems, 
etc.). 

670 



tampering can be easily detected with 
cryptographic checksums at any time during 
the system's life. Achieving an equivalent 
level of confidence for the hardware is a much 
more difficult problem, however. While every 
byte of a computer program or data file can be 
observed and validated, most of the gates and 
functions within a hardware element simply 
cannot be observed at a level of granularity 
that permits verification that the current 
implementation is identical to the desired 
implementation. Modern built-in-test and fault 
isolation techniques may not even detect 
elements that had been replaced with 
malicious versions. (An adversary would most 
likely design the hostile element such that it 
would continue to provide the response expected 
by the system.) Recognizing these fundamental 
limitations, tamper detection methods that can 
be applied to shipping containers, and to the 
system's housings and enclosures^ during 
operational use, are suggested by the Trusted 
Distribution supplement of the TCSEC [2] as a 
partial solution. 

One such method is an active system that 
generates an alarm when the enclosure is 
opened. The typical problem with these 
systems is that the intended recipient must be 
able to reset the mechanism once triggered or 
after performing routine maintenance. An 
adversary may therefore also use this 
capability to reset the mechanism after 
replacing or modifying its contents. A related 
device generates and displays a random number 
each time the enclosure is opened. However, 
these devices can usually be replaced with a 
forged unit, programmed to display the 
original number, to conceal the fact that an 
intrusion had taken place. This paper describes 
an active tamper detection system that 
eliminates these vulnerabilities. It can be used 
to help meet the trusted distribution 
requirement as well as to help satisfy life-cycle 
integrity assurance requirements. 

2 The term "enclosure" is used to represent 
shipping containers, equipment housings, and in 
general the physical barriers of the 
environment to be protected. 

Background 

The techniques suggested in Trusted 
Distribution were evaluated to determine the 
most effective method for detecting 
unauthorized access to hardware elements 
during storage, distribution, and in operational 
use. The adversary was assumed to have 
sufficient motive, capability, and opportunity 
to modify or replace any hardware element he 
wished to target. Given this worst-case 
scenario, it was determined that the suggested 
techniques may not be able to adequately 
protect a high-value system against such an 
adversary. 

The methods of protective packaging, couriers, 
registered mail, message authentication codes, 
encryption, and site validation were suggested 
as possible solutions. Since each application 
and its threats are unique, the vendor is 
allowed to submit a plan describing his specific 
approach. The plan may be based on the 
suggested methods, on variations of them, or on 
completely different techniques. It is then 
included in the overall evaluation process. 

One protective packaging technique is to shrink 
wrap the hardware, possibly with some type of 
unique or specially treated material. The main 
disadvantage of this approach is that the 
material may be obtained through its 
manufacturer, other vendors, or even stolen from 
the original equipment's vendor, thus allowing 
an adversary to rewrap the equipment without 
detection. It also cannot be applied to 
physically large equipment, and it cannot be 
used once the system is installed and 
operational. 

Another protective packaging technique is an 
active monitoring system, such as an audible or 
visual alarm, but they suffer from the 
previously mentioned problem that they can 
usually be turned off or reset. 

The last protective packaging method is the 
tamper-resistant seal. Paper seals that cannot 
be removed without their destruction are the 
most common, and are usually applied over two 
mating surfaces or over the screws that hold 
cover panels in place. (A wire and wax seal 
placed through a locking mechanism is a 
related technique.)  A validation stamp is also 

671 



often used to identify the final inspector or 
person who applied the seal. These methods 
offer only minimal protection since the seals 
can usually be easily obtained or copied, and 
validation stamps can be easily forged. 
Personnel authorized to apply the seals can 
also be bribed or extorted into supplying the 
adversary with new seals. Holographic seals 
are substantially more difficult to copy, but 
they can still be obtained from converted 
personnel. Electronic seals are also available, 
such as devices that generate random numbers 
(or record the date and time) whenever covers 
are removed or containers are opened. The 
concept is that every access will cause a 
different random number to be displayed. 
Tampering can then be detected by comparing 
the current number with its value prior to 
shipping. The main weakness of this approach 
is that an adversary can simply remove the 
device and replace it with a similar one that 
displays the original number. The false device 
may even continue to generate random numbers 
with successive triggers to avoid drawing 
suspicion to itself. 

The use of a courier service is also suggested. Its 
advantage is that the equipment will be under 
constant surveillance by bonded or otherwise 
trusted individuals. However, even trusted 
persons can be converted by bribery or extortion, 
and its cost is significantly higher than 
methods that do not require continuous personal 
attention. 

Registered mail, supplemented by methods 
that ensure the identity of the sender, is also 
suggested. As with couriers, however, 
personnel can be converted. In addition, 
constant surveillance is not provided, allowing 
an adversary the opportunity to access the 
equipment. 

Message authentication codes, encryption, and 
checksum programs are suggested, but are only 
suitable for use on software. 

Lastly, on-site validation is suggested as an 
additional layer of assurance that the 
hardware had not been tampered with during 
its distribution. Physical inspections are 
discussed, but inventory inspections can only 
detect gross discrepancies, and engineering 
inspection by qualified technicians may not 

detect attack by a competent adversary who 
conceals his efforts. 

A TAMPER-RESISTANT 
ELECTRONIC SEAL 

Since none of the above methods were 
considered sufficiently robust to withstand the 
efforts of a motivated adversary, the Tamper 
Detection System (TDS) was developed-*. 
When implemented with an array of suitable 
sensors, the TDS provides a cost-effective, 
reusable seal that cannot be forged, bypassed, 
or replaced. In fact, even persons authorized to 
access the equipment will not be able to do so 
without leaving evidence. 

A Display Module and an array of tamper 
sensors are placed within the area to be 
protected. When any sensor is activated, the 
Display Module generates a random number, 
referred to as the audit count (Figure 1). The 
audit count is then encrypted and stored, and a 
sequence number is incremented. 

ft 

c 273       1F7A 
; 

ve_ Datakey 

Sequence 
Number 

Audit 
Count 

SJ 

FIGURE 1. The Front Panel of the Display 
Module. 

To later recover this information, a trusted 
individual inserts a Datakey^ containing the 
corresponding decrypt key. The decrypt key is 
extracted, and the encrypted audit count is 
decrypted and displayed along with the 
sequence number. Verification that the 
sequence number and audit count had not 
changed since the last time they were 
examined provides assurance that access had 
not been gained. The combined operations of 
generating a random number each time access 

3 Patents on this device are pending in the U.S. 
Patent Office. 
4 Datakey is a trademark of Datakey, Inc., 
Burnsville, MN. 

672 



takes place, and limiting its recovery only to 
authorized personnel in possession of a uniquely 
keyed and physically separate device, results 
in an unforgeable seal. This provides its users 
with a very high level of confidence that the 
enclosure's integrity had not been breached. 

Functional Description 

A functional block diagram of the TDS is shown 
in Figure 2. The Display Module contains all 
the required circuitry and the Datakey 
interface. It is installed within the monitored 
enclosure, but with its display and Datakey 
receptacle externally accessible. The Datakey 
is a physically separate device that is 
assigned to the trusted individual responsible 
for maintaining the security of the system (e.g., 
the System Security Officer, or SSO). 

The Algorithm element performs the 
encryption and decryption functions. A public- 
key algorithm is used so that compromise of the 
Datakey will not compromise the device's 
effectiveness [3]. (The Data Encryption 
Standard could also have been used, but loss of 
its common encrypt and decrypt key could allow 
an adversary to create a false Display 
Module.) 

The Random Number Generator element 
produces the random numbers used as the audit 
count. A hardware randomizer, based on a 
random physical process to ensure a non- 
deterministic output (e.g., thermal noise from a 
semiconductor junction), is used to prevent an 
adversary from predicting the next (or 
previous) audit count. A software-based 
pseudorandom number generator could also 
have been used to reduce the cost of the TDS, 
but it may not resist attack as well as a noise- 
based randomizer. 

The NV-RAM element provides non-volatile 
storage of the Display Module's serial number 
and encrypt key, and the current sequence 
number and encrypted audit count. An 
electrically-erasable PROM (EEPROM) is used 
since it retains its contents even if power is lost 
or disconnected. 

The Display element is the visual display for 
indicating the sequence number and audit count. 
Three decimal characters  are used  for  the 

sequence number, and four hexadecimal 
characters for the audit count. This supports 
1,000 sequence numbers and 65,536 different 
audit counts. 

The Sensors element interfaces with normally- 
open and normally-closed sensors. Any type of 
tamper sensor can therefore be used, since even 
the most sophisticated ones are compatible 
with these standards. When triggered, they 
initiate the generation of a new sequence 
number and audit count. 

The Control element directs the various 
internal    operations. It    also    allows 
programming of the serial number and encrypt 
key when a special Initialization Datakey is 
inserted into the Display Module. 

The Sequence Counter element reads the current 
sequence number from NV-RAM, increments it 
by one, and stores it back in NV-RAM. The 
sequence number is not encrypted since this 
would require that the decrypt key be retained 
within NV-RAM, reducing the work factor 
required for an adversary to recover it. The 
overall security of the system is not reduced as 
long as the audit count remains encrypted. 

The Power Control element performs two 
functions. First, it removes power from all 
elements except Sensors to minimize power 
consumption. When a sensor is triggered, it 
turns the other elements on so they can perform 
their functions. Power is then removed until 
the next activation. Its other function is to 
monitor the input power to detect a low voltage 
condition. 

The serial number allows a single Datakey to 
store the decrypt keys of several Display 
Modules. This eliminates the need for an SSO 
to manage multiple Datakeys. 

When Sensors is activated, Control extracts the 
encrypt key from NV-RAM and transfers it to 
Algorithm. The Random Number Generator 
then generates a new audit count, which is 
encrypted by Algorithm and stored in NV- 
RAM. The unencrypted audit count is then 
purged from memory. The sequence number is 
also incremented and stored. 

673 



DISPLAY MODULE 

Datakey 

JVLTU inn—^ 

N.O. Sensors 
N.C. Sensors 

Power 

Ground 

Random 
Number 
Generator 

NV-RAM 

t   t 
Algorithm 

Serial* 

Encrypt Key 

Audit Count 

Sequence # n 
Seq. Counter 

Sensors Control 

JJ' 
Display 

i 
Power Control & 
Low Voltage 
Detect 

FIGURE 2. Functional Block Diagram of the TDS. 

When the Datakey is later inserted, Control 
extracts the decrypt key and transfers it to 
Algorithm. The encrypted audit count is then 
read from NV-RAM and decrypted. The 
sequence number is also extracted, and both are 
displayed until the Datakey is removed. If 
these values do not agree with their previously 
noted values, then an unauthorized intrusion 
had taken place. 

Implementation 

A block diagram of a representative 
implementation is shown in Figure 3. Using 
commercially available components, this 
circuitry can be contained entirely within the 
Display Module itself (with the exception of 

the sensors and an optional external power 
source). 

A low-power microcontroller continuously scans 
the tamper sensors for activity and for insertion 
of a Datakey. When triggered, it energizes the 
other circuits until all processing is successfully 
completed, then shuts them down to conserve 
power. 

A hardware randomizer produces the audit 
counts in this implementation, but it can be 
eliminated if a firmware-based pseudorandom 
sequence generator is implemented within the 
microcontroller. 

674 



Sensor 
Interface 

Exponentiator 

Low-Power 
Microcontroller 

Datakey 
Interface 

Display 
Drivers Display 

Randomizer 
(optional) 

RAM ROM 

i 

Battery Ir 

External Power Ir 

-- Power 
Controller 

FIGURE 3. A Typical Implementation of the TDS. 

A hardware exponentiation device, such as 
those available from the Cylink Corporation, 
performs the encryption and decryption 
mathematics. (Performing these calculations in 
firmware would take too long to execute.) 

Liquid crystal displays are preferred due to 
their lower power consumption, but other 
displays with appropriate drivers can be used 
as well. 

A TRUSTED DISTRIBUTION 
APPLICATION 

For a trusted distribution application, the 
Display Module, and its sensors and batteries, 
must be installed within the desired shipping 
container. (Since the container must not allow 
access to its contents without triggering one or 
more sensors, it must be specifically designed to 
ensure that they cannot be bypassed.) Any 
commercially available sensor can be used, such 
as microswitches, pressure switches, or light 
detectors.    Most are compatible with each 

other, so they can even be used in combination. 
However, it is the selection and installation of 
these sensors that usually proves to be the most 
difficult aspect of the implementation. 
Ensuring that they always trigger when access 
is gained, never trigger falsely, and cannot be 
bypassed can be tricky. 

Once the container is filled and ready for 
shipping, the Display Module must be 
programmed with its serial number and encrypt 
key. The SSO therefore uses the Key 
Generation Support System (KGSS), a special- 
purpose computer program hosted on a MS-DOS 
personal computer. After entering the desired 
serial number, a matching encrypt-decrypt key 
pair will be generated. (A database of 
previously generated key pairs could also have 
been used.) The KGSS then loads the serial 
number and encrypt key into an Initialization 
Datakey through its serial port. Likewise, the 
serial number and decrypt key are loaded into 
an Operational Datakey for everyday use by 

675 



the SSO*. Obviously, access to this program 
must be carefully controlled to prevent 
compromise or malicious modification (such as 
to force the generation of key pairs of the 
adversary's choosing). This can be 
accomplished with conventional trusted 
mechanisms or a dedicated computer under 
strict physical control. 

Figure 4 illustrates the operation of the 
Display Module. The Initialization Datakey 
is first inserted into the Display Module. 
When the Initialization Datakey is 
recognized, its serial number and encrypt key 
are extracted and stored. The sequence number 
is incremented, and a new audit count is 
generated, encrypted, and stored. (The 
unencrypted audit count is overwritten from 
memory.) The Initialization Datakey is then 
removed and the Operational Datakey, 
containing only the serial number and decrypt 
key, is inserted. The sequence number and audit 
count will then be displayed, and can be 
recorded in an audit log. The Operational 
Datakey is then removed. The Initialization 
Datakey can then be erased by the KGSS for 
reuse at a later time. 

The container is now sealed and it can be 
released for shipping. The Datakey and audit 
log are sent to the recipient by independent 
means (e.g., secure phone call, Registered Mail, 
etc.). Upon arrival, the local SSO inserts the 
Datakey and verifies that the sequence number 
and audit count were identical to those 
supplied in the log. Since any attempt to access 
the container will result in a new sequence 
number and audit count, the recipient can have 
a high degree of confidence that the container 
held legitimate and unaltered hardware (or 
software) elements. In addition, the container 
itself could not have been surreptitiously 
replaced since an adversary cannot determine 
the pre-attack values in order to program a 
forged TDS. 

5 The same type of Datakey is used in both 
applications.  Parameter fields are used to 
distinguish Initialization Datakeys from 
Operational Datakeys. 

A LIFE-CYCLE INTEGRITY 
ASSURANCE APPLICATION 

The same process can be used to monitor a 
computer system for unauthorized internal 
access. The Display Module is mounted within 
the computer with its display visible through 
a small window, and a number of microswitches 
or other types of sensors are installed on the 
various cover panels. A rechargeable battery 
supplies power when line power is not 
available. 

After initial system installation, the SSO 
inserts the Datakey and records the date, time, 
sequence number, and audit count in the system 
log, then removes the Datakey. This is 
repeated periodically, perhaps at the 
beginning of each shift. If the sequence number 
or audit count were ever different from the last 
log entry, with no justification, a breach of the 
system's integrity may have occurred. 
Appropriate steps could then be taken to 
investigate the cause. 

Occasionally, routine maintenance will need to 
be performed on the computer, forcing 
generation of a new sequence number and audit 
count. This situation is easily handled. The 
SSO inserts the Datakey and records the new 
information in the log, along with an 
explanation of the maintenance performed and 
the name of the technician. The technician 
should also verify the entry and sign the log. 
This provides an audit trail of who had 
internal access to the computer, when it took 
place, and for what reason. 

SECITRTTY FEATURES 

In order for an unauthorized access to go 
undetected, the sequence number and audit count 
must be returned to their previous values. 
Without knowledge of the decrypt key, 
however, an adversary must recover the 
encrypt key, algorithm, and encrypted audit 
count from the Display Module, and then use 
them to attempt to calculate the decrypt key. 
This requires that significant reverse- 
engineering and computational resources be 
applied to that particular Display Module, 
and would therefore be too expensive, time 
consuming, and risky to be practical. 

676 



Yes I 
Load And Save The 

Encrypt Key And 
Serial Number 

No No 
• 

Has A Tamper >w 
Sensor Been       ^ 
Activated?   >^ 

Read The Decrypt Key From 
The Datakey And Decrypt 
The Encrypted Audit Count 

+ 
Display The Audit Count And 

Sequence Number 

Voc 

Increment The Current 
Sequence Number 

Generate And Encrypt A New 
Audit Count 

Save Sequence Number And 
Encrypted Audit Count 

FIGURE 4.  Flowchart of the Display Module's Operation. 

677 



If the audit count were not stored in encrypted 
form, then it could be recovered by probing the 
Display Module's memory (assuming that it 
could be accessed without triggering any 
sensors). However, the computational 
complexity of cryptanalysis with only a small 
amount of ciphertext increases the work factor 
required for the attack to succeed to the point of 
being impractical. 

The use of random audit counts prevents 
undetected replacement of the Display Module 
or forgery of the system logs. For example, if a 
simple incrementing access count was used, 
anyone could read the last count from the log, 
make a new entry with it incremented by one, 
and forge the SSO's signature. Possession of the 
Datakey would not be required for this attack 
to succeed. 

If a sequence number were not used, it would be 
theoretically possible, although not very 
likely, that an adversary in possession of the 
Datakey could repetitively remove and replace 
a cover until the previous audit count 
reoccurred. Use of a sequence number therefore 
ensures that this type of attack will not succeed 
because the resulting gap in sequence numbers 
will be obvious. Eventually, however, the 
sequence number will reach its maximum and 
begin counting again from zero. Since the audit 
counts are random, though, the probability of 
the same audit count occurring when the 
sequence number reached its previous value is 
extremely small. In any case, this could require 
a significant amount of time, thus increasing 
the adversary's risk of being discovered. 

Replacing the encrypt and decrypt keys or the 
serial number will also not allow subversion of 
the TDS's protection. This simply initiates the 
same processes as if a tamper sensor had been 
activated. Since the sequence number is 
incremented, not reset, and since a new audit 
count is generated, encrypted, and stored, this 
attack will not succeed. The different sequence 
number and audit count displayed to the SSO 
the next time he checks the system will 
indicate that it had been tampered with. 

The Display Module cannot be replaced with a 
false unit because the current audit count cannot 
be determined by the adversary, and power 
cannot be removed after access is gained in time 

to interrupt the process. For example, a simple 
microprocessor-based implementation with a 
hardware exponentiation chip can complete all 
of these operations within 250 milliseconds. 
Clearly, this does not allow enough time for a 
cover to be removed and its power to be 
interrupted before a new audit count can be 
generated and stored. 

Possession or access to the KGSS will also not 
allow the TDS to be subverted. Once a 
matching encrypt-decrypt key pair is generated 
and loaded into a specific Display Module and 
its Datakeys, that key pair is longer needed by 
the KGSS and is therefore purged from memory. 
However, it must be expected that someone will 
eventually lose their Datakey. At that time, a 
new encrypt-decrypt key pair can simply be 
generated and loaded into the system. This 
slight inconvenience is offset by the advantages 
of less complex handling procedures for the 
KGSS and the significantly reduced possibility 
of compromise of fielded key pairs. 

Although it is still possible for the "trusted" 
person with the Datakey to gain unauthorized 
access and update the log with the new audit 
count and a false reason, attacks by anyone else 
will be detectable. Since this places a greater 
degree of responsibility on the persons who 
possess the Datakey, and limits the number of 
suspects if an unauthorized modification is 
later discovered, a deterrent effect is provided 
as well. 

LIMITATIONS OF THE TDS 

Although the TDS eliminates many of the 
vulnerabilities typical of more conventional 
approaches, it cannot eliminate them all. 

For example, persons in possession of the 
Datakey, or those with access to the KGSS, can 
still make unauthorized modifications to the 
system and log the event under a false pretense. 
The same is true of persons who have the 
opportunity to copy someone else's Datakey. 
Implementing the "two man control" rule by 
requiring two Datakeys to be inserted at the 
same time is one solution to this problem. 

False alarms, and failing to detect intrusions 
due to intermittent or faulty sensors, are also as 
much of a problem for the TDS as they are for 

678 



any of the conventional approaches. The 
reliability of modern electronics is very good; it 
is the selection and installation of the sensors, 
and the mechanical design of the enclosure, 
that are usually the Achilles heel of such 
systems. They must provide adequate coverage 
over the environment to be protected, and they 
must remain immune to external influences. For 
example, the operation of resistive pressure 
sensors can be influenced by temperature 
variations of natural or hostile origin. The 
same is true of magnetic reed switches with 
respect to externally-applied magnetic fields. 
Improper selection or placement of sensors may 
therefore allow internal access to be gained 
without detection, at which point the sensors 
may be electrically or physically bypassed to 
facilitate future attacks. 

It should be clear that while passive and 
active tamper detection systems can offer 
varying levels of protection, they must be 
designed carefully if they are to resist the 
attacks of a motivated and skilled adversary. 

It must be remembered, however, that detecting 
unauthorized equipment access only addresses a 
small part of the much larger problem of 
hardware authenticity. Hostile attacks at the 
integrated circuit level can affect data 
integrity and system availability, and attacks 
at the card or subsystem level can easily 
compromise data confidentiality as well. 
Knowing that an adversary had accessed these 
elements does not help us to determine what, if 
anything, may have been done to them. What 
is really needed are mechanisms to provide the 
same high level of assurance for hardware 
integrity as the cryptographic checksum now 
provides for software. As trusted systems find 
use in an ever increasing variety of 
applications, we must search for robust, 
effective, and economical methods to ensure 
that unauthorized hardware or software 
modifications cannot go undetected. 

REFERENCES 

[1]    Department of Defense, Department 
of Defense Trusted Computer System 
Evaluation Criteria, DoD 5200.28- 
STD, December 1985 

CONCLUSION 

Although trusted distribution is not required 
until Class Al, life-cycle integrity assurance is 
required of all systems at Class Cl and higher. 
While the Integrity In Automated Information 
Systems supplement of the TCSEC [4] attempts 
to define the properties of integrity, it stresses 
mechanisms applicable primarily to software. 
It is therefore hoped that the methods 
presented here will prove useful to those 
developing trusted systems and to those 
responsible for maintaining their secure 
operation. 

[2]    National Computer Security Center, A 
Guide To Understanding Trusted 
Distribution In Trusted Systems, NCSC- 
TG-008,15 December 1988 

[3]    Meyer, Carl H. and Matyas, Stephen 
M., Cryptography: A New Dimension In 
Computer Data Security, John Wiley and 
Sons, 1982 

[4]    National Computer Security Center, 
Integrity In Automated Information 
Systems, C Technical Report 79-91, 
September 1991 

679 



A TCB SUBSET FOR INTEGRITY AND 
ROLE-BASED ACCESS CONTROL * 

Daniel F. Sterne 
Trusted Information Systems, Inc. 

Glenwood, Maryland 

Abstract 

The Extended Access Control Subsystem (ECS) is an experimental prototype providing a set of 
configurable access controls. These controls are intended to support a range of application-specific 
security policies. The design of ECS represents a synthesis of important ideas from the research literature 
including non-hierarchical domains, the Clark-Wilson integrity model, role-based policies, object-state- 
based controls, and use of hardware protection rings. ECS has been designed as an untrusted TCB 
subset for use with an extended version of the Trusted XENIX1 operating system. The features of ECS 
are described, and the impact of the TCB subset approach on its design is discussed. 

1    Introduction 

The evolution of trusted system principles and technology has historically been oriented toward addressing 
the DoD confidentiality problem. There is increasing recognition, however, that systems are needed that 
can be trusted with respect to other kinds of security concerns, especially those of the civil sector. Building 
these systems confronts a number of open issues, including the following: 

• What security policies other than DoD confidentiality should be supported by automated mechanisms, 
and what mechanisms are appropriate ? 

• What trust principles and criteria should guide development and evaluation ? 

• What engineering strategies facilitate timely and cost-effective development and evaluation ? 

• How can such systems achieve a reasonable degree of compatibility with existing products and appli- 
cations programs ? 

This paper describes part of a research project that attempts to explore these issues. The current focus 
of the project is the construction of the Extended Access Control Subsystem or "ECS". ECS is a research 
prototype that provides a collection of access control mechanisms that are configurable to support a range 
of application-specific security policies. The design of ECS represents a synthesis of key ideas taken from 
the research literature; these include non-hierarchical domains, the Clark-Wilson integrity model, role-based 
policies, object-state-based controls, and use of hardware protection rings. ECS has been designed to be an 
untrusted TCB subset [30] that will operate in conjunction with an extended version of Trusted XENIX [9], 
a trusted operating system evaluated by NCSC at the TCSEC B2 evaluation class. ECS is the first example 

•Funded by DARPA through RADC contract F3062-89-C-0125. 
'XENIX is a registered trademark of the Microsoft Corporation. 

680 



known to the author of applying TCB subsetting to the enforcement of policies other than mandatory access 
control (MAC) or discretionary access control (DAC). As such, it provides an opportunity to explore the 
applicability of TCSEC-oriented principles and evaluation criteria to the construction of systems that are 
trusted with respect to other security policies. 

The remainder of this paper is organized in the following manner. Background on ECS and TCB subsetting 
are provided by Sections 2 and 3. Section 4 describes ECS features and requirements. Section 5 describes 
the high-level architecture of ECS. The influence of TCB subset considerations on the design of ECS are 
explained in Section 6. Section 7 provides a summary. 

2    Background and Rationale 

ECS requirements and features were chosen after a survey of DoD and civil-sector security policies [32]. 
ECS is primarily intended to support "organizationally-directed" policies, sometimes referred to as non- 
discretionary policies, in which an organization dictates a fixed division of authority for resource usage. 
Computer systems used in this context are typically characterized as turn-key or embedded systems. Such 
systems typically do not allow system users to extend the system's software or create personal files. By 
contrast, general purpose computing systems allow users to create and modify programs and other files. 
They also allow users to give other users access to these files. 

The key features of ECS support role-based access, the Clark-Wilson model of integrity, flexible non- 
hierarchical domains, and object-state-based controls. These features, described in the next section, were 
selected based on perceived applicability, flexibility, and potential for relatively high assurance implementa- 
tion. In addition, because of resource limitations, the project emphasized extending ideas previously studied 
by other researchers, and deemphasized inventing entirely new ones. Resource limitations also encouraged 
a design strategy based on the notion of TCB subsets. Using this strategy, ECS has been designed as an 
untrusted layer added to the Trusted XENIX operating system. In principle, ECS could be added, removed, 
or modified without affecting the trustedness of a Trusted XENIX configuration.2 

This strategy has reduced ECS development time by allowing ECS to make use of existing Trusted XENIX 
features and assurances. For example, Trusted XENIX provides identification and authentication, audit, 
trusted path, subject and object abstractions, and non-bypassable tamper-resistant access controls. More- 
over, since TCB subsetting is a "non-invasive" approach, the integrity of the Trusted XENIX TCB is pro- 
tected from adverse interactions with ECS. This potentially reduces the scope of ECS debugging efforts. 

ECS is being developed consistent with B2 architectural assurance requirements, including least privilege, 
modularity, and effective use of hardware. The high-level design of ECS is nearly complete, and has been 
supported by detailed prototyping of the kernel extensions discussed in Section 5 [24]. Approximately half of 
the anticipated ECS code modules have been implemented and are beginning initial integration tests. The 
coding of a demonstration application is also underway. 

3    TCB Subsets 

The notion of a TCB subset was initially described by Shockley and Schell [30], and has more recently served 
as the basis for the Trusted Database Management System Interpretation (TDI) of the TCSEC [34]. A TCB 
subset is a generalization of the reference monitor abstraction. The primary difference is that "a TCB subset 
may have an internal interface to a smaller included mechanism, which is also a TCB subset" [30]. 

-In practice, the Trusted XENIX kernel must first be modified slightly to allow this. These modifications are discussed in 
subsequent sections. 

681 



This notion provides a strategy for designing and evaluating complex TCBs as collections of simpler TCB 
subsets. Each TCB subset enforces a subset of the system access control policy, described in [30] as "the 
rules concerning the access of subjects to objects". Motivations for this strategy include reducing TCB 
complexity, reducing TCSEC evaluation effort, and reducing development and evaluation cost and risk for 
vendors wanting to extend the security perimeter of an existing TCB. The TCB subset strategy imposes 
a number of requirements on the design of a TCB. Although a thorough treatment of these is beyond the 
scope of this paper, a few key requirements must be cited to provide context for the discussions that follow. 

A TCB subset, like a reference monitor must be non-bypassable, tamperproof, and designed to allow complete 
analysis and testing. Consequently, every TCB subset responsible for protecting a particular object must be 
consulted on every access to that object. Moreover, in combination, the selected subset policies must be at 
least as restrictive as the desired system policy. 

Each subset must be allocated to a set of protection domains that are partially ordered by privilege.3 TCB 
subsets may be hierarchically ordered such that the domain of one subset includes that of other subsets 
and is hence more privileged. A less privileged subset must have no capability to bypass or tamper with 
a more privileged subset, and must be untrusted with respect to the policy enforced by it. In principle, if 
these conditions are met, it should be possible to evaluate a less privileged subset largely independently of 
previous successful evaluations of more privileged subsets. 

The two subsets discussed in this paper, ECS and an extended version of Trusted XENIX, are hierarchically 
ordered, and have been designed in accordance with TCB subset requirements. 

4    ECS Features 

4.1    Non-Hierarchical Label-Based Domains 

The foundation of ECS is a set of software facilities to define and enforce an application-specific configuration 
of execution domains. (The relationship between domain configurations and security policy enforcement is 
explored in [28].) These facilities, which are similar to those provided by the LOCK system [5, 35, 23], 
restrict the ability of subjects to access objects based on domain definitions that are described in terms 
of data types. ECS associates a special unchangeable security attribute with each Trusted XENIX object 
that indicates its type. This attribute is sometimes referred to as a type label because of its similarity to 
a MAC label. Nevertheless, type labels are independent of the MAC labels that Trusted XENIX associates 
with objects. Except for a few types that ECS reserves for marking and protecting its own access control 
tables and other metadata, a particular type has no inherent meaning to ECS. Types are simply a means 
for applications designers to identify equivalence classes that are used in defining domains. 

Every ECS subject executes an ECS domain. Domains are specified when ECS is configured for a given 
system installation. Each domain specification lists all of the types of data that are accessible to a subject 
in that domain and, for each type, the permitted modes of access (i.e., read or read/write). In this way, 
the input sources and output sinks for each subject can be precisely controlled, and information flow among 
system components can be configured to suit the application [35, 36, 23]. While ECS allows an arbitrary 
configuration of domains to be established, domains cannot be changed or created "on-the-fly", i.e., while the 
system is in operation. Domain configuration changes are possible only when ECS is in a special maintenance 
mode under control of the Trusted XENIX Trusted Systems Programmer. 

Unlike LOCK, which uses a special purpose security coprocessor called the SIDEARM [23] for type and 
domain enforcement, ECS relies only on software and a general purpose CPU. 

3The partially ordered domains referred to here should not be confused with the unordered ("non-hierarchical") domains 
discussed in the next section. The former, which are enforced by hardware mechanisms, are exported to ECS by Trusted 
XENIX, while the latter are exported by ECS to applications. 

682 



4.2    Support For the Clark-Wilson Model 

One of the key ideas advanced by the Clark-Wilson integrity model [6, 7] is that controlled operational 
data must only be modified by programs that have been certified to change the data in a constrained and 
appropriate manner. These programs are referred to as transformation procedures or TPs. Objects holding 
operational data are referred to as Constrained Data Items or CDIs. Rules C2 and El of the model describe 
this requirement by referring to sets of access relations of the form [TPi, (CDIa, CDIb, CDIc,...)]. Each 
relation stipulates that a particular TP (program) can be permitted to access a particular set of CDIs. The 
model also states that relations may use wild cards to match classes of CDIs. 

The domain facilities provided by ECS have been specifically tailored to support an extended version of these 
relations. In ECS parlance, each extended relation is referred to as a "bound operation definition". This 
term is intended to suggest the "binding" [6, 4] of a TP to a set of CDIs, or, alternatively, the binding of an 
operation (program) to particular data types. Bound operation definitions extend Clark-Wilson relations in 
three ways: 

1. A bound operation definition refers to a named TP and a set of CDI data types rather than a set of 
specific CDIs. 

2. A bound operation definition also includes access mode constraints to be enforced on the TP. For each 
CDI data type listed, the set of permissible access modes is specified. 

3. A bound operation definition includes a list of other bound operations that may be invoked or signalled. 

This approach is borrowed from Thomsen's work [35, 36] on the LOCK project, which describes the rationale 
and many additional details. The essence of the approach is that each TP should be externally constrained 
so that it can access only the CDIs necessary to its purpose, and only in necessary access modes. This is 
in accordance with the principle of least privilege and is motivated in part by an assertion by Clark and 
Wilson [6]: 

... an important research goal must be to shift as much of the security burden as possible from 
certification to enforcement. 

Access constraints on TPs are implemented by executing TPs as distinct subjects in highly-restricted non- 
hierarchical domains. In Thomsen's work, each domain is specified by a row in the domain definition table. 
TPs and relations, however, are not explicitly represented, because a single domain may be shared by multiple 
TPs and relations. Any object whose type is executable in the domain may represent a TP, or a part of a 
TP. The relation (or collection of relations) associated with the table row is implied by the row's elements; 
these identify the types that are executable, readable, and writable in the associated domain. 

By contrast, ECS data structures are list-oriented rather than tabular, and have been tailored to provide a 
more explicit representation of TPs and extended Clark-Wilson relations. In ECS, lists of bound operation 
definitions are used in place of domain definition and domain transition tables. A separate bound operation 
is specified for each desired relation. Furthermore, all TPs belong to a single type. Consequently, a bound 
operation definition refers to its TP by program name rather than by type, as indicated in item 1 above. 
This has the effect of creating a unique execution domain for each relation. The domain includes execute 
access to the TP, and read or read/write access to specified types, as shown in item 2 above. 

Each ECS subject is associated with a single bound operation. When a subject is created, it begins executing 
the corresponding TP. Nevertheless, an ECS subject can call or interpret other programs (i.e., without 
a domain change). Logically, such programs are parts of the TP that have been packaged as separate 
executables for reusability, size, or other reasons. An additional ECS feature allows each bound operation 
definition to denote one of its writable data types as being the default type.   This type is automatically 

683 



assumed at run time when a TP attempts to create an untyped output object. These features provide 
ECS-compatibility for existing executables that call other executables and create objects without referring 
to type or bound operation names. For example, they allow a command line interpreter such as a Unix4 

shell to be installed as a TP. Compatibility with existing software is discussed further in a later section. 

A bound operation is also permitted to invoke other bound operations identified as invocable in its definition, 
as indicated in item 3 above. Because each bound operation executes in its own domain, invoking a bound 
operation is analogous to executing a LOCK domain transition. ECS provides the invoke bound operation 
service for this purpose. A successful call to this service terminates the calling subject and creates a new 
subject that is confined to a different domain. As discussed in later sections, the new subject is created 
within the process formerly occupied by the caller. 

4.3    Role-Based Constraints 

Abstractly, a role is a set of rights to access, operate on, or otherwise use resources in particular ways [14, 18, 
2, 35]. In ECS, a role provides the right to execute a collection of bound operations arranged in a tree-like 
structure. This structure is formed by the invocation and signalling linkages that are part of bound operation 
definitions (see item 3 above). This corresponds to a collection of LOCK domains having inter-domain links 
represented by entries in a LOCK domain transition table [5, 35]. 

In ECS, a role definition identifies the "start-up" bound operation that is to be initiated at login time when 
the role is assumed. Typically, the start-up bound operation will provide a menu of commands or act as a 
restricted command line interpreter. The start-up bound operation is the root of the role's invocation tree; 
the bound operations that are this bound operation's descendants in the tree (if any) are those that are 
listed in its definition as being accessible via invocation and signalling. The definitions of these descendant 
bound operations similarly identify their own descendants, and so on. A bound operation that is the root of 
one role tree may be a descendant node of the root of another role tree. In this way, new roles can be built 
by referring to existing roles, and hierarchical relationships [2] between roles can be directly represented. 

Implementing a role as a collection of execution domains allows an authorized user to be given simultaneous 
read and write access to an arbitrary collection of data types, while confining each TP accessible to the user 
to a small, highly restrictive domain; this facilitates use of fine-grained least privilege [35]. In this way, 
a single user session can be given access to a collection of execution domains with precisely defined and 
controlled domain interactions. 

Associated with each ECS role or group of roles is a user authorization list. This list identifies the users 
who are authorized to assume the role at login time. In addition, the role may have other constraints 
associated with it that limit the ability of users to be authorized for the role or to activate the role. For 
example, some roles may be accessible only if not simultaneously in use by other individuals [14, 18], or only 
during login sessions at a particular MAC level [18]. These constraints are enforced by the predefined ECS 
Login Program. Static separation of duty constraints [6, 20] can also be specified; these prohibit a single 
individual from being authorized for a combination of roles that provides access to critical combinations of 
bound operations. Static separation of duty constraints are enforced by the User Authorization Program, a 
predefined TP used to add users to authorization lists. 

In ECS, one role can be given custody over the user authorization list for another role. This allows supervisory 
roles to dynamically authorize individuals to fill subordinate roles under their supervision. If a subordinate 
role includes a subset of a supervisory role's bound operations, a form of delegation of authority is provided. 
Distribution of role custody can be implemented in ECS without use of additional mechanisms. This is 
accomplished by assigning different types to the authorization lists for different roles. By binding the User 
Authorization TP separately to each of these types, a collection of role-authorizing bound operations is cre- 
ated. Each bound operation can then be included in the invocation tree of the appropriate supervisory role. 

4Unix is a registered trademark of AT&T. 

684 



4.4 Object-State-Based Controls 

One of the ideas that emerged in papers stimulated by the Clark-Wilson model is that of dynamic separation 
of duties [21, 13, 26]. This form of separation of duties constrains access to an object based on its previous 
access history. The historical information of interest includes the identities of individual users who have 
accessed it and the TPs they used. In the financial control example described in [26], the processing of 
a check requires three sequential steps: prepare, approve, and issue. Although some individuals may be 
authorized to perform more than one of these steps on checks in general, no individual may perform more 
than one step on any particular check. 

The object-state-based controls provided by ECS are derived from those described by Sandhu [26] for enforc- 
ing dynamic separation of duties. In ECS, these controls provide an additional layer of constraints that can 
be selectively added to the domain controls discussed above. In Sandhu's approach, a "transaction control 
expression" is associated with each type of controlled object. The transaction control expression describes 
the sequence of TPs (transactions5) that can be applied to each object and the associated separation of duty 
constraints, e.g., no individual may apply more than one TP to any object. Associated with each object is 
a "mini-audit log" that is protected and updated by the TCB. This log captures the object's access history 
in terms of the user and TP identifiers. Each time an object access is attempted, the mini-audit log and the 
transaction control expression are consulted. If the separation of duty constraint is not met, the attempt is 
rejected; if the attempt is successful, the log is updated accordingly. 

In ECS, TP sequencing controls are specified as state transition tables that are equivalent to finite state 
automata. These controls can be used with or without separation of duty constraints, which rely on user 
identifiers. This allows sequencing controls to be used in systems in which identification and authorization 
are handled procedurally, and user identifiers are not maintained by the system (e.g., Aegis [32]). 

ECS state transition tables consist of four columns. The columns represent a current state, a TP identifier, 
new state, and an optional separation of duty specifier. The latter is used to mark combinations of transitions 
that cannot be (or must be) executed by the same individual. Each row describes a permissible state 
transition from a given current state to a new state, whereby the transition is accomplished by applying 
the specified TP. Attempts to access an object whose type has an associated state transition table will be 
rejected unless the attempt is consistent with the sequencing and optional separation of duty constraints 
described in the table. 

During ECS system configuration, object-state-based controls for sequencing or dynamic separation of duty 
can be established optionally for any type. This is accomplished by attaching a state transition table to the 
type's definition. For each object belonging to such a type, ECS will create and maintain a current state 
indicator, and if necessary, a mini-audit log. These constitute dynamic metadata that cannot be modified 
directly by a TP; TPs can only affect these indirectly as a result of accessing the objects whose states they 
describe. Unlike other types of objects that can be accessed using existing Trusted XENIX system services 
(e.g., open, read, write), objects of state-controlled types can only be accessed via specialized ECS-provided 
services. These services integrate write access, mutual exclusion, and synchronized updating of current state 
indicators and mini audit logs. 

4.5 Orthogonality and Compatibility With Trusted XENIX 

ECS provides a set of access controls that are logically independent of MAC and DAC. Access control 
requirements of different applications may vary. Hence, it is desirable that a configured system be able 
to make use of either ECS, or MAC and DAC, or some combination thereof [14, 18]. A TCB or TCB 
subset, however, must be non-bypassable. As a result, selective use of one kind of access controls must be 
accomplished by configuring all others so that their associated access checks always succeed. 

5Sandhu assumes that TPs are full-fledged transactions exhibiting serializability and failure atomicity, properties not assumed 
here. 

685 



If desired, ECS can be configured so that its checks always succeed. All objects can be assigned to a 
single data type, and all subjects to a single execution domain in which the sole data type is readable8 

and writable, and is the default output data type. Only a few bound operations are needed (apart from 
predefined bound operations that are used to configure ECS). Each simply binds this single domain with a 
command interpreter TP that is presented to a user at the beginning of a session. The subjects that execute 
these TPs are then capable of interpreting or executing (via an exec system call [1]) any program that would 
otherwise be accessible according to MAC and DAC. Data object accesses are similarly not restricted by 
ECS. These subjects can also spawn other subjects having the same ECS attributes by means of the fork [1] 
system call. Thus, this ECS configuration imposes no access control constraints beyond those associated 
with MAC and DAC. 

Similarly, MAC and DAC checks can be set up to always succeed. This allows ECS's integrity and role-based 
controls to be the sole effective source of constraints. This is accomplished by labeling all objects at system 
low and setting their discretionary controls for world access in all modes. In addition, all roles must be 
defined so that they are accessible only during system low sessions. 

Hybrid configurations are also possible. In particular, it may be useful to operate a single Unix-like domain 
in which ECS controls are not used, together with a set of tightly constrained domains tied to specific roles. 
This allows a single system to be used simultaneously for two purposes: 1) general purpose computing, 
including software development, and 2) a turn-key environment of canned programs. The former allows 
manipulation of uncontrolled programs and data (e.g., Clark-Wilson model Unconstrained Data Items). 
The latter imposes highly structured restrictions on accesses to controlled operational data. This hybrid 
configuration also allows software of unknown origin to be present on a system while preventing viruses in 
such software from infecting programs and data in protected domains. 

5    ECS Architecture 

The pertinent aspects of the architecture of ECS are described in the sections that follow. 

5.1    Hardware Privilege States 

ECS was designed to exploit existing trust features and assurances of Trusted XENIX while minimizing 
impact on it. This is accomplished by extending Trusted XENIX so that its architecture exports an additional 
hardware-defined privilege state. As shown in Figure 1, Trusted XENIX is designed to use two of the four 
hardware privilege states of the Intel 802867[10]. The Trusted XENIX kernel runs at privilege level 0, the 
most privileged 80286 state, while user applications and utility programs run at privilege level 3, the least 
privileged state. Privilege levels 1 and 2 are unused and are ordinarily hidden by the kernel interface. 

The ECS design takes advantage of one of these unused privilege levels. The central component of ECS, 
the Access Mediation Module (AMM), runs at privilege level 1. As shown in Figure 1, the Trusted XENIX 
kernel has been extended to support the loading, mapping, swapping, and execution of privilege level 1 
memory segments. Once ECS has been booted, these segments contain AMM code and data. The extended 
kernel allows the protection ring facilities of the 80286 to be employed in the manner of Multics [22] and 
GEMSOS [27]. 

In an ordinary Trusted XENIX system, access to kernel services is provided via a special call gate described 
by a descriptor in the global descriptor table [9]. Descriptors and descriptor tables are hardware-recognized 
data structures manipulated by the kernel. Kernel service calls transfer control through the gate, causing 
the processor privilege level to change to the level specified in the descriptor, in this case privilege level 0. As 

6 ECS does not distinguish between read and execute access. 
7 80286 is a registered trademark of the Intel Corporation. 

686 



Trusted XENIX 
Process Structure 

Trusted XENIX 
Process Structure 
Extended For ECS 

Privilege 
Level Three 

Privilege 
Level Zero 

Application 
Program 

I 
to 

si 
Trusted XENIX 
Kernel 

Application 
Program 

k] ECS Access 
y\ Mediation 

/? > Module 
\/(AMM) 

si 
Trusted XENIX 
Kernel 

Privilege 
Level Three 

Privilege 
Level One 

Privilege 
Level Zero 

Figure 1: Trusted XENIX Process Structure 

part of ECS extensions to the kernel, the descriptor table has been modified so that kernel service calls are 
no longer transferred directly to the kernel. Instead, they are intercepted by the AMM executing at privilege 
level 1. The AMM forwards to the kernel only those calls that satisfy ECS access control constraints. The 
AMM forwards these calls using a separate kernel call gate that is not accessible to applications programs 
executing at privilege level 3. Other ECS changes to the Trusted XENIX descriptor tables allow the segments 
containing AMM code and static initialization data to be shared automatically by every process. This saves 
memory by eliminating unnecessary duplication of code and static data. 

The AMM component of ECS is not a separate process. Rather, each process contains its own AMM.8 

Executing the AMM at privilege level 1 gives the AMM several kernel-like capabilities. For example, the 
AMM within each process can access all privilege level 3 memory segments that are in that process's address 
space. However, unlike the kernel, the AMM in one process has no special ability to access the address 
spaces of other processes. A second benefit of privilege level 1 execution is that the AMM's code and data 
structures are protected from tampering by code executing at privilege level 3. 

Prototyping has demonstrated that the extensions described above represent a relatively small change in 

8 As described later, this generalization does not apply to Trusted XENIX Trusted Processes. 

687 



the IVusted XENIX kernel [24]. Nevertheless, because of their presence, a configuration that includes ECS 
does not constitute an NCSC-evaluated configuration of Trusted XENIX. This may be an important fact in 
particular operational settings. However, from the research perspective of designing ECS so that it could be 
added, removed, or modified without affecting the trustedness of a suitably designed trusted system, it is 
irrelevant. 

5.2    AMM Overview 

The AMM within a process intercepts and mediates all kernel calls made by code executed at privilege level 
3 (e.g., calls made by a Clark-Wilson TP). For calls that open, read, or write files, devices, shared memory, 
semaphores, and other Trusted XENIX objects, the AMM performs a domain check. If the requested access 
mode and object type are not listed in the bound operation definition associated with the process, then the 
AMM rejects the call. Otherwise the call is forwarded to the kernel, unless the object is a state-controlled 
object. If the object is a state-controlled object, additional checks are required. 

Since accesses to state-controlled objects are permitted only via specialized AMM services, the AMM will 
reject attempts to access these objects via kernel services. The AMM services compare the process's TP 
name and the object's current state indicator with the state transition table associated with the object's 
type. If these match, the access attempt is translated into a set of kernel calls that obtain write access 
to the requested object, and provide mutual exclusion and current-state indicator updating. If dynamic 
separation of duty constraints are associated with the object's type, yet another check is performed. This 
check compares the separation of duty constraints with the process's user identifier and the object's mini- 
audit log. If the access attempt does not violate the constraint, a similar translation into kernel calls is 
made, including additional calls that update the mini-audit log. 

The AMM controls and protects the process's subject attributes. These include its bound operation identifier 
and definition, which describe the subject's domain definition and allowable domain transitions. If the invoke 
bound operation service is called, the AMM determines whether the requested bound operation is invocable 
by the subject. If so, the AMM terminates the subject and creates a new subject in the caller's process. The 
AMM implements this via a call to the Trusted XENIX exec service [1] preceded by AMM preprocessing. 
The preprocessing steps include replacing the process's bound operation identifier and definition with that of 
the called bound operation, closing all open descriptors to objects that should not be accessible to the called 
bound operation, and masking out the collection of UNIX environment variables [1] that might otherwise be 
inherited by the new bound operation. The AMM then makes an exec call to the kernel. This causes the TP 
(program) associated with the requested bound operation to overlay the caller's TP and begin execution. 

Ordinary exec calls that originate within a TP are handled differently. The AMM will forward these calls to 
the kernel as long as the ECS type associated with the requested program object is readable in the caller's 
domain. The AMM does not perform the preprocessing steps described above because in this case the process 
must continue under the auspices of the calling bound operation. The AMM also forwards fork service calls 
to the kernel. Fork calls cause the creation of new processes and hence, new ECS subjects. For these calls, 
the extended kernel automatically copies the calling process's entire address space into a new process. The 
address space includes the ECS subject attributes and other information maintained by the AMM in the 
process's privilege level 1 memory. 

5.3    Session Start-up 

At the start of each session, the start-up bound operation associated with a requested role is automatically 
run. This is accomplished by having the Trusted XENIX login process automatically transfer control to the 
ECS Login Program, a predefined bound operation that is part of the ECS TCB. The ECS Login program 
checks the user's authority to assume a requested role. If the user is authorized, it uses the invoke bound 

688 



operation service to run the start-up bound operation associated with the role. 

5.4    Storage of ECS Object and Subject Attributes 

The object type labels ECS uses for domain enforcement are similar in some respects to MAC labels managed 
by Trusted XENIX. For example, ordinary users do not have the capability to change these labels. Trusted 
XENIX embeds MAC labels in file system internal data structures called inodes [1, 9]; there is one inode 
for each file, and the inode contains that file's label. One design option for ECS was to expand the inode 
structure so that it could accommodate the ECS label as well as the MAC label. The inode structure, 
however, is so fundamental to file system operations that this option was ruled out as too invasive and 
harboring unacceptable risks to the reliability of Trusted Xenix. 

Instead, ECS object labels, and other metadata, are kept in a collection of ordinary Trusted XENIX files. 
These metadata files themselves bear ECS labels that are used to protect them from tampering by ECS 
subjects. Since the ECS AMM intercepts and mediates all kernel calls, it can prevent these metadata files 
from being modified by unauthorized ECS subjects. Except for files containing role authorization lists, the 
only subjects authorized to modify metadata files are subjects accessible exclusively to the ECS trusted 
systems programmer. The AMM, however, has relatively free access to these files, and is constrained only 
by Trusted XENIX MAC and DAC. As described in a later section, the performance penalty associated with 
this design will be reduced if necessary by caching metadata in sharable privilege level 1 memory. 

ECS subject attributes are maintained by the AMM in per-process privilege level 1 memory and are accessible 
only to the AMM that is part of that process (and to the kernel). This approach is analogous to the design 
of the kernel, which keeps TVusted XENIX subject attributes in per-process kernel memory. 

6    Designing ECS as a TCB Subset 

ECS has been designed as a hierarchical TCB subset.   This section describes how TCB subset concerns 
influenced its design and its relationship to the Trusted XENIX TCB. 

6.1    Relevance 

Although TCB subsetting has been advanced primarily in the context of TCSEC, a broader applicability of 
the approach has been implied. For example, [30] states that "Arbitrary access control policies are admitted 
in the discussion ... so that arguments can be made which are valid for any access control policy." Similarly, 
the TDI [34] describes one of its purposes as providing a standard for "systems that satisfy trust requirements 
(with particular emphasis on preventing the disclosure of data) for sensitive applications." 

The assertion that TCB subsetting is applicable to systems trusted to support policies other than DoD 
confidentiality is an important one, especially in view of the increasing interest in broader notions of trust 
as exemplified by the ITSEC [11], the Federal Criteria [19], and other related research and standards ac- 
tivities [25, 12]. As yet, this assertion is unexplored; the author knows of no published reports on the use 
of TCB subsetting in the design of such systems. Superficially, it may appear that ECS simply enforces an 
exotic form of DAC, and is no different in its use of subsetting than trusted database management systems 
under development [17]. ECS controls, however, are not discretionary in nature, providing no means for 
subjects to pass permission to other subjects, as suggested in the TCSEC glossary. Consequently, ECS may 
be the first demonstration of the applicability of TCB subsetting to policies other than DoD confidentiality. 

689 



6.2    Non-Kernel Design 

Since the heart of the Trusted XENIX TCB is the kernel, an obvious design option was to implement ECS 
as a set of kernel extensions. If ECS were implemented in this manner, however, it would share the same 
execution domain as the kernel, and would need to be trusted to not subvert Trusted XENIX'S MAC and 
DAC enforcement. This would directly contradict the objectives of the TCB subset approach. 

The decision not to embed ECS object labels in the existing inode structure involved the same considerations. 
Inodes are metadata whose contents are controlled by the kernel. It would be difficult to provide ECS the 
degree of inode access it needs without giving ECS the ability to subvert the Trusted XENIX kernel. For 
similar reasons, ECS subject attributes are stored separately from subject attributes maintained by the 
kernel. 

6.3    Privilege Level One Address Mappping 

To support the AMM, process address spaces include four kinds of memory segments that are accessible 
only when the processor is executing at privilege level 1 or 0. These segments contain the following kinds of 
information: 

• Per-Process Metadata 

• AMM Code 

• Static Global Metadata 

• Dynamic Global Metadata 

The per-process metadata segment contains the privilege level 1 call stack and the ECS subject attributes 
associated with the process. This segment also holds the AMM's program variables including those used 
to keep track of its execution state. As the name implies, a separate per-process metadata segment is 
allocated and mapped for exclusive access by each process; there is no sharing. This exclusivity constraint 
and other segment access constraints are enforced by the 80286 memory management hardware according 
to the segment descriptor tables constructed by the kernel. 

To use physical memory efficiently and to improve throughput, the remaining three types of privilege level 1 
segments are shared to varying degrees among processes. However, because ECS is designed as an untrusted 
TCB subset, the degree of allowable sharing must be limited according to DAC and MAC. 

The AMM code segment provides the functionality to filter and forward all calls by applications to the 
kernel; consequently, this segment needs to be mapped into every process. To be consistent with DAC and 
MAC, this is permissible only if the segment is a world-readable, read-only segment, classified system-low. 
This poses no problem because the information contained in the AMM code segment is consistent with these 
attributes. 

The static global metadata segment contains parts or all of the ECS access control configuration tables. 
These tables contain definitions of the bound operations, roles, and object-state-controls to be enforced 
by ECS. These tables can only be changed by a trusted systems programmer while Trusted XENIX is in 
single-user maintenance mode. Thus, from the standpoint of an operational configuration, this metadata is 
static. Like the AMM code segment, it is world-readable, read-only, and system-low, and consequently can 
be mapped legitimately into the address space of each process without violating DAC and MAC. Of course, it 
is the obligation of the trusted systems programmer who defines this metadata to assure that the sensitivity 
of role names, program names, and other metadata are in fact system-low. Under some circumstances it 
might be necessary to use fictitious aliases for such information, to serve as an unclassified "cover story". 

690 



Dynamic global metadata segments contain metadata that changes to reflect system activity. Examples 
include object state indicators, mini-audit logs, and ECS object labels; all of these are created and deleted 
in conjunction with the creation and deletion of objects. These forms of metadata are stored primarily on 
disk but will be cached in shared memory segments if necessary to increase throughput during mediation. 
Dynamic metadata segments must be writable by subjects at varying MAC levels. Consequently, they cannot 
be globally mapped into the address spaces of all processes. Instead, they must be segregated by the MAC 
levels and category sets of the objects they describe. 

The MAC constraints that must be applied to the sharing of privilege level 1 dynamic metadata segments 
are exactly the same as those already implemented by Trusted XENIX for privilege level 3 shared memory 
segments [9]. This capability will be implemented if needed by extending existing shared memory services 
so that they also work for privilege level 1 memory segments. 

6.4 Trusted XENIX Trusted Processes 

The Trusted XENIX TCB includes a collection of Trusted Processes as well as the kernel. To constitute a 
truly untrusted TCB subset, ECS must be untrusted with respect to these Trusted Processes as well. This 
dictates that the AMM not be capable of intercepting calls from Trusted Processes to the kernel. If the AMM 
were able to intercept these calls, it could subvert their intent. Moreover, it could interrupt the trusted path 
between the user and the Trusted XENIX TCB. 

ECS addresses this problem by providing Trusted Processes direct access to a separate kernel call gate. The 
kernel has been modified so that it rejects calls that enter through this gate unless the calling process holds 
Trusted XENIX security privileges; all such processes are Trusted Processes. A different kernel call gate is 
used by the AMM. Through use of hardware protection features, the gate for AMM use is made inaccessible 
to code segments except those running at privilege levels 1 or 0. Hence, the kernel need not check whether 
the caller is authorized to use this gate. This design, depicted in Figure 2, ensures that ECS AMM cannot 
be bypassed by its subjects. Yet it allows Trusted Processes to invoke kernel services without interception 
by the AMM, and without having to trust the AMM. 

The TCSEC stipulates that the TCB "maintain a domain for its own execution". A strict interpretation of 
this phrase may require that the AMM not even be mapped into the address spaces of Trusted Processes. ECS 
complies with this interpretation by allowing processes to use either of the process address maps depicted in 
Figure 1. The original two-state Trusted XENIX map includes addressability of segments at privilege levels 
0 and 1. This map is used by Trusted Processes. The three-state map is intended for all other processes. It 
includes addressability of segments at privilege levels 0, 1, and 3. 

The selection of the appropriate map is programmer controlled by means of parameters supplied to the linker 
and loader. If an application process is erroneously linked so that it uses the original two-state map instead 
of the three-state map, it will be unable to call the kernel via either the Trusted Process gate or by calling 
the AMM, and consequently will be non-functional. The overall topology of the Trusted XENIX and ECS 
TCBs is depicted in Figure 3. 

6.5 A View of Subjects and Objects 

Analyzing a TCB architecture for conformance with TCB subset requirements requires an identification of 
the subjects and objects associated with each subset [34]. In this section we briefly review the relationship 
between the subjects and objects that are associated with the extended Trusted XENIX and ECS TCB 
subsets. 

A Trusted XENIX subject is defined as a process, and includes an address space [9]. ECS extensions to 
the kernel effect a small change in this definition. A subject's address space now may consist of two logical 

691 



Gate 
Calls 

Hardware 
Privilege 
Checks 

q> © <D 

sis 
-i    -3    -i 

i 
Q- 

t- O 

i     s 

i 
j        ; 

| X  
II       I' I 

Software 
Privilege 
Checks 

Possesses 
Security 
Privileges     /    YES 

Process 
Service 
Request 

Kernel 

Figure 2: Kernel Gate Privilege Checks 

partitions, one for privilege level 3 segments, and a new one for privilege level 1 segments. The MAC and 
DAC constraints governing the introduction of objects into subjects' address spaces, however, are identical 
for both partitions. The AMM resides in the level 1 partition of each untrusted subject. As a result, from 
the standpoint of MAC and DAC enforcement, the AMM is not an independent subject. Rather, it is part 
of each Trusted XENIX subject into which it is mapped. 

An ECS subject is defined by a pair consisting of the privilege level 3 portion of a process, and an ECS 
bound operation definition. This definition parallels that of the TCSEC, i.e., "a process/domain pair". By 
this definition, the privilege level 3 portion of each process9 is a separate subject. In addition, when an 
ECS subject invokes a different bound operation, the invoking subject is destroyed (or made permanently 
inactive), and a new ECS subject is created within the old subject's process. This view of subjects is similar 
to that described in [16]. The new ECS subject retains the Trusted XENIX security attributes of the old 
ECS subject; in fact, these two ECS subjects, together with the AMM, are viewed by Trusted XENIX as a 
single Trusted XENIX subject. 

Trusted XENIX objects include files, directories, semaphores, shared memory, and devices. ECS re-exports 

'Excluding Trusted XENIX Trusted Processes. 

692 



Trusted 
Xenix ECS 
TCB TCB 
Boundary Boundary 

Trusted 
XENIX 
Trusted 
Processes 

ECS 
Login, 
Boot, 
Installation 
Utilities 

Applications Programs 

ECS Access 
Mediation 
Module 
(AMM) 

Privilege 
Level 
Three 

Trusted 
XENIX 
Kernel 

Privilege 
Level 
One 

Privilege 
Level 
Zero 

Hardware 

Figure 3: TCB Topology 

all of these objects. In addition, it exports a new abstraction, the state-controlled object, that cannot be 
accessed using Trusted XENIX kernel services. State-controlled objects are an example of the "interpretively 
accessed" objects described in [30]. 

7    Summary 

The Extended Access Control Subsystem (ECS) has been described. ECS is a research prototype for inves- 
tigating the extension of trusted systems technology to support policies beyond DoD confidentiality. ECS 
provides a configurable set of access control mechanisms intended to support a range of application-specific 
security policies. ECS is innovative in several respects: 

693 



• It represents a synthesis of important ideas from the research literature. 

• It has been designed specifically to support integrity and role-based policies, e.g., those described by 
the Clark-Wilson integrity model. 

• It demonstrates the applicability of TCB subsetting to the design of access controls other than those 
for MAC or DAC. 

• It has been designed for compatibility with an existing trusted system and existing untrusted applica- 
tions software. 

The impact of TCB subset considerations on ECS has been described; these include a non-kernel design, 
selective policy-governed sharing of privilege level 1 memory segments, and ECS bypass facilities for Trusted 
Processes. A view of the relationship between the subjects and objects associated with Trusted XENIX and 
ECS has been described. 

The TCSEC and its interpretations, such as the TDI, have been criticized as being irrelevant for systems 
that support policies other than DoD confidentiality. The ECS prototype argues against this view (as do 
[15, 29]). It illustrates that the principles underlying the TCSEC and the technology underlying current 
trusted systems are not in contradiction with the access control requirements of other policies. Rather, 
these principles and technology may provide a useful base from which additional principles, technology, and 
evaluation criteria can be developed. This prototype also suggests that suitably designed trusted systems 
can be extended to support non-TCSEC policies without invalidating their TCSEC evaluation ratings. This 
may be a promising transition strategy for evolving TCSEC-oriented products to meet the security needs of 
the commercial sector. 

References 

[1] M.J. Bach. The Design of the Unix Operating System, Prentice-Hall, Englewood Cliffs, NJ, 1986. 

[2] R.W. Baldwin. Naming and Grouping Privileges to Simplify Security Management in Large Databases. 
In Proc. 1990 IEEE Symposium on Security and Privacy, pages 116-132, Oakland, CA, May 1990. 

[3] D. Bell and L. LaPadula.   Secure Computer System Unified Exposition and Multics Interpretation. 
Technical Report MTR-2997, MITRE Corp., Bedford, MA, July 1975. 

[4] D. Bell. Putting Policy Commonalities to Work. In Proc. 14th National Computer Security Conference, 
pages 456-471, Washington, DC, October 1991. 

[5] W. E. Boebert and R. Y. Kain. A Practical Alternative to Hierarchical Integrity Policies. In Proc. 8th 

National Computer Security Conference, pages 18-27, Gaithersburg, MD, September 1985. 

[6] D. Clark and D. Wilson.  A Comparison of Commercial and Military Computer Security Policies. In 
Proc. 1987 IEEE Symposium on Security and Privacy, pages 184-194, Oakland, CA, April 1987. 

[7] D. Clark and D. Wilson. Evolution of a Model for Computer Integrity. In Proc. ll"1 National Computer 
Security Conference, Baltimore, MD, October 1988. 

[8] Department of Defense. Department of Defense Trusted Computer System Evaluation Criteria, Decem- 
ber 1985. DoD 5200.28-STD. 

[9] Final Evaluation Report, Trusted Information Systems, Inc. Trusted XENIX. National Computer Secu- 
rity Center, Ft Meade, MD, January 1991. 

[10] 286 Microprocessor Programmer's Reference Manual. Intel Corporation, Mt Prospect, Illinois, 1990. 

694 



[11] Information Technology Security Evaluation Criteria (ITSEC), Office for Official Publications of the 
European Communities, Brussels, Belgium, 1991. 

[12] Integrity-Oriented Control Objectives: Proposed Revisions to the Trusted Computer Systems Evaluation 
Criteria (TCSEC), C Technical Report 111-91, National Computer Security Center, Ft Meade, MD, 
October 1991. 

[13] P. Karger. Implementing Commercial Data Integrity with Secure Capabilities. In Proc. 1988 IEEE 
Symposium on Security and Privacy, pages 130-139, Oakland, CA, April 1988. 

[14] C. Landwehr, C. Heitmeyer and J. McLean. A Security Model for Military Message Systems. In ACM 
Transactions on Computer Systems, Vol 2, No.3, August 1984. 

[15] T. Lee. Using Mandatory Integrity to Enforce "Commercial" Security. In Proc. 1988 IEEE Symposium 
on Security and Privacy, pages 140-146, Oakland, CA, April 1988. 

[16] T. Levin, S. Padilla and C. Irvine. A Formal Model For Unix Setuid. In Proc. 1989 IEEE Symposium 
on Security and Privacy, pages 73-83, Oakland, CA, April 1989. 

[17] T.F. Lunt, et al. A Near term Design for the SeaView Multilevel Database System. In Proc. 1988 IEEE 
Symposium on Security and Privacy, page 234-244, Oakland, CA, April 1988. 

[18] F.L. Mayer. Security Controls for an Automated Command and Control Information System(ACCIS): 
Baseline Definition. Technical Report TISR-201, Trusted Information Systems, Glenwood, MD, May 
1989. 

[19] Minimum Security Functionality Requirements For Multi-User Operating Systems (Draft), Computer 
Security Division, Computer Systems Laboratory, National Institute of Standards and Technology, 
Gaithersburg, MD, January 1992. 

[20] W. Murray. Data Integrity in a Business Data Processing System. In Report of the Invitational Workshop 
on Integrity Policy In Computer Information Systems (WIPCIS), Waltham, MA, October 1987. 

[21] M.J. Nash and K.R. Poland. Some Conundrums Concerning Separation of Duty. In Proc. 1990 IEEE 
Symposium on Security and Privacy, pages 201-207, Oakland, CA, May 1990. 

[22] E.I. Organick. The Multics System: An Examination of Its Structure, The MIT Press, Cambridge, MA, 
1972. 

[23] R. O'Brien and C. Rogers. Developing Applications on LOCK. In Proc. 14th National Computer 
Security Conference, pages 147-156, Washington, DC, October 1991. 

[24] H. Orman and D. Rothnie. Guide to TX Privilege Layer One: Implmentation and Use. Technical 
Report TISR-383, Trusted Information Systems, Glenwood, MD, September 1991. 

[25] J.E. Roskos, S.R. Welke, J.M. Boone, and T. Mayfield. Integrity in the Department of Defense Computer 
Systems. Technical Report P-2316, Institute for Defense Analyses, July 1990. 

[26] R. Sandhu. Transaction Control Expressions for Separation of Duty. In Fourth Annual Computer 
Security Applications Conference, pages 282-286, Orlando, FL, December 1988. 

[27] R.R. Schell, T.F. Tao, and M. Heckman. Designing the GEMSOS Security Kernel for Security and 
Performance. In Proc. 8th National Computer Security Conference, pages 108-119, Gaithersburg, MD, 
1985. 

[28] Lawrence J. Shirley and Roger R. Schell. Mechanism Sufficiency Validation By Assignment. In Proc. 
1981 Symposium on Security and Privacy, pages 26-32, Oakland, CA, April 1981. 

[29] W.R. Shockley. Implementing The Clark/Wilson Integrity Policy Using Current Technology. In Proc. 
the 11th National Computer Security Conference, Baltimore, MD, October 1988. 

695 



[30] W.R. Shockley and R.R. Schell. TCB Subsets For Incremental Evaluation. In Proc. Third Aerospace 
Computer Security Conference, pages 131-139, Orlando, FL, December 1987. 

[31] D. Sterne, M. Branstad, B. Hubbard, B. Mayer, L. Badger, and D. Wolcott. Security Policies for 
Tactical Environments: A Research Study. Technical Report TISR-353, Trusted Information Systems, 
Glenwood, MD, November 1990. 

[32] D. Sterne, M. Branstad, B. Hubbard, B. Mayer, and D. Wolcott. An Analysis of Application Specific 
Security Policies. In Proc. 14th National Computer Security Conference, pages 25-36, Washington, DC, 
October 1991. 

[33] D.F. Sterne. On The Buzzword "Security Policy". In Proc. 1991 IEEE Symposium on Security and 
Privacy, Oakland, CA, May 1991. 

[34] The Trusted Database Management System Interpretation of of the Trusted Computer System Evaluation 
Criteria. NCSC-TG-021, National Computer Security Center, Ft Meade, MD, April 1991. 

[35] D.J. Thomsen. Role-based Application Design and Enforcement. In Proc. of the Fourth IFIP Workshop 
on Database Security, Halifax, England, September 1990. 

[36] D.J. Thomsen and J.T. Haigh. A Comparison of Type Enforcement and Unix Setuid Implementation 
of Well-Formed Transactions. In Proc. Sixth Annual Computer Security Applications Conference, pages 
304-312, Tucson, AZ, December 1990. 

[37] Trusted Mach System Architecture, TISR-324, Trusted Information Systems, Glenwood, Maryland, Oc- 
tober 1991. 

696 



A TOOL FOR COVERT STORAGE CHANNEL ANALYSIS 
OF THE UNIX KERNEL 

David A. Willcox 
Steve R. Bunch 

Motorola Microcomputer Group 
Urbana Design Center 

1101 E. University Ave. 
Urbana, IL 61801 

Motorola MCG has developed a tool that was used to search for covert storage channels in the 
kernel of USL's security-enhanced UNIX System V Release 4 (SVR4.1ES). Using parse trees 
generated by the C compiler front-end, the tool does a control and data flow analysis of the 
entire kernel to detect references that violate system security policy. Hints (assertions) added to 
the kernel source give the tool additional information about security relationships. 

This paper describes the covert channel analysis tool and its application to the SVR4.1ES kernel. 
It also presents some of the results of the covert channel analysis, and describes several sample 
covert channels. A method that could be used to exploit each channel is given, as is the method 
ultimately used to treat each channel. 

Keywords: Covert channel, storage channel, data flow analysis. 

INTRODUCTION 
Motorola MCG worked with UNIX System 
Laboratories (USL) to develop the SVR4.1ES operating 
system, which is in formal evaluation at the B2 security 
level. One of the requirements of a B2 evaluation is a 
thorough search for covert storage channels. 

Motorola MCG developed a Covert Channel Analysis 
(CCA) tool to assist in this search. This made practical 
a thorough search for covert channels in a complex, 
commercially-available system. This paper describes 
our approach and reports on our experience with using 
it 

COVERT CHANNELS 
A covert channel is any method that allows a transfer of 
information in violation of the system's security policy. 
It allows an agent (a process or user) that has access to 
high-security information to send information to 
another agent that is not authorized to have that 
information; for example, it might allow a TOP SECRET 

UNIX is a trademark of UNIX System Laboratories, Inc. 

Copyright 1992, Motorola, Inc. All rights reserved. 

agent to leak information to an agent that was only 
cleared to see UNCLASSIFIED data. 

The presence of a covert channel does not automatically 
allow an agent to gain access to information that it 
should be denied, but it does allow a Trojan horse to 
leak information to an agent that shouldn't have it.'11 

Covert channels can be broadly broken down into two 
categories: storage channels and timing channels. A 
covert storage channel allows two processes to 
exchange information via some object to which they 
both have access. The shared object could be a storage 
location (a kernel global variable for example), or it 
might be some attribute of an object (such as a file) that 
the two processes can legitimately share but not write. 
In a storage channel, the receiving process can read a 
value set (directly or indirectly) by the sending process. 

A covert timing channel occurs when the sending 
process can affect the time it takes the receiving process 
to perform some operation.    A classic example is 

[1] If the security policy is properly designed and there are 
no covert channels, then a Trojan horse cannot leak 
information. If a "low agent" fools a "high agent" into 
running a Trojan horse program, the program might do 
damage to the high agent's files, but won't be able to leak 
any information to the low agent. 

697 



reading a block from a file, causing the disk arm to be 
repositioned and thus altering how long it takes another 
process to access its own file on the same disk. 

Note that to be of concern, a covert channel does not 
have to transfer a large amount of data at once. Many 
covert channels can transmit only a single bit on each 
use. Often the information is simply that the sender did 
or did not perform some operation. But, if the channel 
can be used repeatedly, or if there are many different 
instances of the same channel (for example if it can be 
exercised independently on each of several different 
files), then there is a potential for transmitting a large 
amount of data. The National Computer Security Center 
(NCSC) guidelines for a B2 system prohibit any channel 
with a sustained bandwidth of over 100 bits/second. 
Lower bandwidth channels are permitted, but any over 
10 bits/second must be audited by the system, and any 
over 1 bit/second must be documented. 

Also note that a channel does not have to be completely 
reliable. Many channels are very "noisy" because they 
depend on close synchronization between the sender 
and receiver or on exclusive access to a widely-used 
resource. A busy system can make synchronization 
difficult or can generate competing uses of the shared 
resource. However, the techniques for error correcting 
codes in the presence of noise are widely known, so it 
will always be possible to transmit some amount of 
"clean" data even on a very noisy channel. 
Furthermore, error detection and retransmission can be 
quite easy in the case of covert channels because the 
backwards channel from receiver to sender is often 
"overt". (An UNCLASSIFIED agent is allowed to give 
information to a TOP SECRET agent, for example.) The 
bandwidth limit mentioned above applies to the number 
of "clean" bits transmitted, not the raw bandwidth of 
the channel. 

EXISTING ANALYSIS 
METHODOLOGIES 

Several existing techniques for detecting covert storage 
channels are based on the Shared Resource Matrix 
Methodology (SRMM). A variant of this method was 
used, for example, in the evaluation of Secure XENIX 
[Ts87]. SRMM searches for shared objects that can be 
written by one user and read by another. 

To find covert channels using this method, one 
constructs a matrix with all system variables on one 
axis, and all system calls on the other. The variables 
might be simple data items of which only a single copy 
exists in the system, or they might be instances of a 
class of variables of which there are many copies.  In 

each cell of the matrix, one notes whether the given 
variable can be read and/or written by the given system 
call. A closure operation is then performed on the 
matrix to account for information that can be 
transferred from one variable to another by a system 
call. (If system call A reads variable x and writes y, and 
system call B reads variable y, then B is considered to 
indirectly read x.) 

Any variable that can be both read and written (by the 
same or different system calls) is a potential channel. 
The investigator must examine each such variable to 
determine if a covert channel exists. Most channels 
identified by this method are not covert channels, 
because either. 

(1) They are "overt" channels. They are either 
transferring information within a process, or 
between processes that are allowed to communicate 
under the security policy, or 

(2) They are prohibited by the system. Sufficient tests 
exist in the code to ensure that processes that 
should not be able to communicate cannot share 
this variable. 

While SRMM can uncover covert channels, it requires a 
large amount of manual analysis. It was used in the 
analysis of user-level commands in SVR4.1ES, because 
there is a relatively small number of objects that can be 
referenced. But in a system as large as the kernel, there 
are thousands of variables and hundreds of system calls. 
Virtually all of the variables are both read and written 
somewhere, and therefore must be investigated as 
possible covert channels. While techniques exist to 
reduce the effort (some variables are local to a process 
and can be discarded, and others can be grouped into 
classes that are manipulated together), the analysis is 
still an expensive proposition. The theory does not help 
you to distinguish between covert and overt channels; 
much of the hard work is still "an exercise for the 
reader." 

Another approach is the lattice model of secure 
information flow [De76] [De77]. This model looks at 
the operations on objects in a program and the security 
classes of those objects to identify implicit and explicit 
information flow between objects, and to flag flows that 
violate the security policy. This is very similar to the 
approach we took, but it does not address one of the 
biggest problems in analyzing a large, general-purpose 
operating system: determining the set of objects to 
which a pointer can refer, and tracking that set through 
the lifetime of the pointer variable. Discovering and 
tracking the security relationships between objects is 
the main function of the CCA tool. 

698 



THE CCA TOOL permitted. 

In our analysis of the security enhanced SVR4 kernel, 
we search for object references that might violate the 
security policy, and then determine which of such 
references create covert channels. Identifying these 
"illegal" references is the purpose of the CCA tool. 

TOOL GOALS 

The design of the tool depends on one underlying 
assumption: every object in the kernel has some 
security label• whether explicit or implicit, and 
therefore every object has some security relationship to 
the currently running process. 

Going back to the basic requirement of a secure system, 
we assert that the process is allowed to read memory 
objects only if the process's security label dominated 
the label of the object, and it is only allowed to write to 
an object if the object's label dominates the process's.[4] 

(If the labels are the same, then the process and the 
object dominate each other.) 

The ultimate goal of the tool is to examine each data 
reference in the kernel and determine the relationship 
between the process executing and the referenced 
object. If the relationship cannot be determined, or if 
the relationship is not appropriate for the type of access 
(read or write), the tool generates a record of the 
reference, identifying the object referenced, the type of 
reference, and the context of the reference (the source 
line of the reference and a "stack traceback"). 

The list of "illegal" references from the tool has to be 
analyzed manually. However, part of the analysis 
process puts tool directives into the code, and these 
directives can be used in later reanalyses. 

Our approach is similar to the lattice flow model, the 
main difference being one of emphasis. The lattice 
model looks for illegal information flows between 
objects with known security labels. The CCA tool's 
main function is to examine references (usually via 
pointers) that might refer to objects with different 
labels, and ensure  that all of the references are 

[2] A security label identifies the hierarchical security level 
such as UNCLASSIFIED or TOP SECRET, plus special- 
purpose "need-to-know" categories, that an agent is 
allowed to access. 

[3] Informally, label A dominates label B if an agent with 
label A may see anything that agent B may. 

[4] SVR4.1ES permits write access to an object only if it has 
the same label as the process. This is to avoid the covert 
channels caused by status returns from write operations. 
The CCA tool does not enforce this, but detects channels 
that would result from any returned status. 

A useful point made by Denning is that when the 
security labels of objects are static, information flows in 
the absence of explicit flows can safely be ignored 
[De77]. Since we assume that objects have static (if 
unknown) labels, this gives us confidence that our 
analysis, which does not explicitly address indirect 
flows, is thorough. 

TOOL ORGANIZATION 

The tool can be broken down into six different areas 
which are described below. 

The parser. The parser for the CCA tool is derived from 
a C compiler. It parses the kernel source and produces 
files containing expression trees and symbol table 
information for each function. 

The structifier. The structifier reads in the parse 
information generated by the parser. The form 
generated by the parser is inherently unstructured; the 
control structures are conditional and unconditional 
GOTOs. It is much easier to analyze the code when the 
control structures are simple, so the structifier converts 
the parsed functions into a form that uses only IF- 
THEN ELSE and WHILE-DO. The resulting code is 
often larger, since sections of code must be duplicated, 
but it is easier to analyze. 

Value tracking. The value tracking code is the central 
part of the CCA tool. The tool can deduce relationships 
to objects only if it has some knowledge about the 
objects to which a pointer can point The value 
tracking code maintains this information. For each 
variable or structure field, the value tracking code keeps 
a list of possible values. Multiple values are possible 
since there can be multiple control paths that lead to the 
expression being evaluated. 

Each value is a pointer value or simple numeric scalar 
value. A pointer value includes the following 
information: 

(1) The identity of the variable pointed to 

(2) Any subfield or substructures explicitly addressed 

(3) An indication that the "pointee" is an element of an 
array 

(4) Any knowledge about security relationship 
between pointer and pointee (see DETERMINING 

RELATIONSHIPS). 

While pointer values are most important, simple 
numeric values are also kept These are primarily used 
to allow the tree walking code (see below) to detect 
cases where conditionals must evaluate to TRUE or 

699 



FALSE. There are many cases in the SVR4.1ES kernel 
where a subroutine takes a flag argument that greatly 
changes its operation, and it is important to be able to 
account for this. As a special case, the value 
UNKNOWN is kept to identify cases where a variable 
has a numeric value, but we don't care to maintain the 
specific value. 

A major function of the value tracker is to maintain 
dynamic control flow contexts. This feature is used by 
the parse tree walker to keep track of values that are 
generated at different control flow levels in the code. It 
is necessary to identify the control flow context where a 
value was generated so that values can be properly 
saved and merged around control constructs. For 
example, if a particular possible value of a variable 
does not exist before an IF-THEN-ELSE construct but is 
generated within the THEN section, then the value 
tracking code ensures that the value does not appear 
while evaluating the ELSE section, and does appear 
when evaluating code following the IF-THEN-ELSE. 
The value tracker also keeps track of "evaluation level" 
so that variables in different evaluations of a function 
(especially recursive evaluations) are distinct. 

Parse tree walker. Once the functions have been 
"structified", the parse tree walker traverses the 
resulting tree, keeping track of variable values at each 
point in the tree. The tree walker is responsible for 
interpreting the semantics of the parsed code, including 
the effects of the control constructs. It makes calls to 
the value tracking code to find current values for 
variables, to record new values, and control the 
dynamic control flow context. When the tree walker 
encounters an IF-THEN-ELSE construct, it attempts to 
determine if the conditional expression must evaluate to 
TRUE or FALSE in the current context If the result 
must be one or the other, the tree walker evaluates only 
the THEN or ELSE of the conditional. If the value of 
the conditional cannot be determined, then the THEN 
and ELSE branches must both be evaluated, each with 
the same starting context, and the values resulting from 
the two cases must be merged to form a new context. 
The handling of a WHILE-DO construct is similar. 
Unless the conditional can be shown to be FALSE, the 
body of the loop is evaluated, and the effects on 
variables produced by the loop are merged back into the 
state that existed at the beginning of the loop. 
However, there is a difference; if there are any values 
generated within the loop that were not visible at the 
beginning of the loop, then it is possible that the new 
values would affect the results of the loop. The loop 
must be reevaluated until no new values are generated. 

MAC policy. The Mandatory Access Control (MAC) 
policy code is responsible for maintaining knowledge 
about relationships among objects, and for reporting 
illegal references to objects. It is called by the value 
tracking code whenever a value is stored or loaded, and 
whenever pointers are manipulated. 

Command interface. A very simple command 
interpreter is included to control operation of the tool. 
Using this interface, it is possible to turn various 
options on or off, to specify default security 
relationships, or to evaluate specific routines. 

DETERMINING RELATIONSHIPS 

The process and an object can have any one of four 
possible relationships: 

(1) Labels equal 

(2) Process "strictly dominates" the object 

(3) Object "strictly dominates" the process 

(4) Neither dominates the other (incompatible labels) 

Similar relationships can exist between any other two 
objects in the system. Strictly speaking, the tool does 
not determine which relationships are possible. Rather, 
it assumes that any are possible, but then strives to 
show that some are not possible. Therefore, if we say 
that the tool knows that the process dominates an 
object, then we really mean that it has determined that 
cases (3) and (4) cannot occur. 

The tool uses several methods to determine the 
relationship between the process and a referenced 
object 

Stack variables. Local stack variables are assumed to be 
private to the process, and therefore to have the same 
label as the process. If there is a path that allows a 
process to reference another process's stack variables 
via a pointer, then that would be subject to the same 
checks as any other pointer dereference as described 
below. 

Fixed relationships. Other, non-stack variables can be 
specified to have a fixed relationship to the process. In 
the SVR4.1ES kernel, for example, the u structure is 
private to the process, and therefore is always 
considered to have the same label as the process. Other 
variables can be specified to dominate or be dominated 
by the process when those variables are expected only 
to be written or read by processes. 

Such relationships are specified in a control file read by 
the tool before performing the analysis. 

700 



Assertions in evaluated code. Other relationships can be 
assumed to be true only after appropriate checks have 
been made in the code. For example, when opening a 
file, the relationship between the process and the file is 
not known until an explicit check is made of the labels 
associated with the file and process. Before such a 
check is made, any reference to data structures 
associated with the file are potential covert channels 
that must be reported and investigated. After the check 
has been made, only references contrary to the 
relationship indicated by the check need be reported. 

Theoretically, the tool could recognize the security 
checks that appear in the code, and adjust its knowledge 
of the relationship appropriately. This was, however, 
impractical. Instead, MAC_ASSERT macros were 
inserted at appropriate points into the code being 
analyzed to tell the tool about known relationships. 
These macros are no-ops when the kernel is compiled 
for execution, but expand into special tool directives 
when the kernel is parsed for analysis. (Approximately 
100 such macros were needed in the SVR4.1ES kernel.) 

Deduced relationships. When a pointer value is stored 
via another pointer (as when a pointer to one data 
structure is stored into another), the tool deduces the 
relationship between the two data structures based on 
the relationships between the process and each of the 
structures. For example, if p and q are local pointers to 
data structures (meaning that the pointers themselves 
are at the same level as the process), and the tool 
encounters the assignment p—>x=q, then it deduces the 
relationship between p-*x and *(p—>x). If, for example, 
the process dominates *q and is at the same level as *p, 
then p—>x dominates *(p-*x).[5* 

Similarly, the tool deduces relationships when a pointer 
value is loaded via another pointer. Using the above 
example, if the tool next encountered a statement 
r=p-+x, it would know that the process dominates *r. 

Pointer arithmetic. Arithmetic on a pointer can destroy 
what is known about the relationship between the 
pointer and the object it addresses. Suppose that the 
tool knows that a particular pointer points to an element 
of an array, and the relationship to the particular 
element is known. If the pointer is incremented or 
decremented it still points to an element of the array, 
but the security relationship is not necessarily the same 
as the original element. (We assume that the code being 
evaluated  is  well  enough  behaved  to not  address 

[5] The notation p—*x is from the C language. It means 
"item x in the data structure whose address is in p." The 
notation *p means "the data structure whose address is in 
P" 

elements outside of the array.) The CCA tool resets the 
known security relationship back to the fixed default for 
the array. 

POST-RUN ANALYSIS 

When a run of the CCA tool is completed, the results 
must be analyzed. Each read or write that the tool 
cannot determine is safe is a potential covert channel. 
Note that it is not necessary that the tool report both 
reads and writes to an object for that object to be part of 
a covert channel. If, for example, the tool finds many 
reads that were permitted by the policy, and a single 
write that was not, then only the write will be reported. 
Since the write might store sensitive information that 
should not be available to the lower-level process (if 
nothing else, the sending process can communicate 
information by controlling whether the write occurs at 
all), each of the reads could potentially be providing 
information to the receiving process that it is not 
authorized to have. 

Each illegal access reported by the tool could be due to 
any of the following: 

(1) It might truly be a covert channel. In this case, the 
channel must be reported to the evaluation team. 

(2) It might be benign. There are cases where 
variables are accessed at different levels, but it can 
be shown that no communication is possible. 
Other variables are only read (for example, system 
configuration parameters) or written (for example, 
metering information only readable by a privileged 
agent) during normal operation. It is appropriate to 
add MAC_ASSERTs or default relationships for 
such variables. This reduces the manual analysis 
required by eliminating the reports generated in 
subsequent runs of the tool. 

(3) It might be that the tool wasn't smart enough to 
figure out that a particular access was legal. In 
many cases, this can be remedied by adding new 
MAC_ASSERTs to the kernel. There are cases 
where there just is no appropriate place to add a 
MAC_ASSERT (the SVR4.1ES kernel code is very 
complex), and these cases must be recorded as not 
a problem. No report to the evaluation team is 
necessary. 

When new MAC_ASSERTs or default relationships were 
added to the kernel, the tool was rerun, producing a new 
report. The new report would be smaller than the first, 
but it still had to be examined to be sure that the 
remaining reports are not due to covert channels. The 
procedure was repeated until all accesses reported by 
the tool can be categorized as one of the above three 

701 



cases. 

Since we completed our work, Porras has described 
covert flow trees as a technique for covert channel 
analysis [Po91]. While we believe that our approach 
has an advantage in that it immediately eliminates 
references to objects that are known to not cause covert 
channels, it is possible that covert flow trees would be a 
valuable tool to aid the post-run analysis. It could be 
used to identify explicit reference patterns that could be 
used to exploit a covert channel. 

EXPERIENCE 

Using the CCA tool is very much an "expert mode" 
operation. Picking appropriate places to insert 
MAC_ASSERTs and getting the tool initialized requires 
knowledge of how the tool works. 

COVERAGE 

Running the tool on the entire unmodified kernel 
proved to be impractical. Some of the difficulties we 
ran into are: 

(1) It is impractical to let the kernel initialize itself. 
This is due partly to the fact that many tables are 
initialized by system initialization in a way that 
cannot be understood by the tool, and due partly to 
the amount of code in the complete kernel. 

(2) Each subroutine is reevaluated in each context in 
which it is called, and many subroutines are called 
from many places in a given caller. This can 
produce an exponential growth in the number of 
times a routine is evaluated as the calling stack 
grows. We've observed at least 32 levels of 
subroutine calls, and routines near the bottom of 
the calling tree are evaluated hundreds or 
thousands of times for each evaluation of the 
routines near the top of the tree. 

(3) Some very complex routines compound the above 
problem by evaluating subroutines many different 
times. 

(4) There are some expensive, but not very interesting 
(from a security policy perspective), routines that 
are called from many places. 

(5) There are hardware dependencies in some routines. 

We used a number of techniques to circumvent these 
problems in our analysis. 
TniraliflatJo" routines. Rather than have the tool run 
through all of the kernel initialization routines, we used 
special-purpose     initialization     routines. This 

initialization ignores most of the complexities of 
initializing the true kernel. Instead, it created dummy 
data structures that substitute for the ones actually 
created by kernel initialization. References to these 
dummy structures were analyzed as if they were 
references to the real structures. 

Simplified routines. We replaced some of the more 
complex routines with simplified versions during the 
analysis. These simplified versions performed most of 
the same work and called the same subroutines as the 
originals, but the looping structure was simplified to 
reduce the number of calls to subroutines. 

Stub routines. Some expensive routines that are not 
interesting for security were disabled. The panicQ 
routine, which abnormally terminates kernel execution, 
is an example. 

Single evaluation. There are some very expensive 
routines that are called in many places, but that cannot 
be ignored in the analysis. These routines were 
evaluated a few times in different contexts to find 
possible violations generated by those routines or their 
callees. Then, for the overall kernel analysis we 
replaced those routines with stubs that have equivalent 
effect (from a security standpoint), but that are much 
faster to evaluate. 

COVERT CHANNELS IN SVR4.1ES 

The covert storage channels found in the analysis of 
SVR4.1ES fall broadly into four categories: 

(1) Shared identifiers. 

(2) Resource exhaustion. 

(3) Caches. 

(4) Direct covert channels. 

Approximately 65 channels were found overall: 10 
shared identifiers, 12 resource exhaustion, 8 caches, and 
35 direct. Of these, 24 were eliminated through various 
means and 7 required no treatment because of low 
bandwidth. The remaining 34 required treatment to 
reduce their bandwidth and/or to audit their use. The 
following sections describe some of the channels and 
how they were treated. 

SHARED ID CHANNELS 

Shared ID channels occur when the identifier space for 
some resource is shared among all security labels of the 
system. If the allocation scheme of these identifiers is 
predictable, and the identifiers are available to a user, 
then they provide a covert channel.    In general, a 

702 



sending agent can consume or release identifiers in the 
identifier space by allocating or freeing the appropriate 
resource, and the receiving agent can detect which (or 
how many) identifiers were used by the sender. Here 
are some examples: 

Process ids. In the SVR4.1ES system, each new process 
is assigned a unique process ID (pid). The pid is the 
next higher unused one after the previous one allocated. 
A sending process can transmit logj/V bits of 
information by creating between zero and N-l new 
processes. (Each new process immediately terminates.) 
The receiving process can then create its own new 
process, note the pid of the new process, and determine 
how many processes the sender created. 

The bandwidth of this channel was estimated at 25 
bits/second.'6) Its bandwidth was reduced to a 
negligible level by randomizing the order of pid 
assignment 

IPC objects. The identifiers for semaphores, shared 
memory segments, and message queues in SVR4.1ES 
are all indexes into fairly small tables within the kernel. 
These identifiers are common to all security labels, and 
they are allocated on a "first free" basis. To exploit this 
channel, the sending agent first allocates N of one of 
these objects. It can then transmit N bits by releasing 
those objects with identifiers that correspond to '0' bits, 
and holding the rest. The receiver then allocates 
objects, determines the identifiers it gets, and converts 
each into the number of one of the '0' bits. The 
receiver then frees the objects it allocated and the 
sender reacquires them in preparation for transmitting 
another N bits. This channel was estimated to transmit 
information at well over 100 bits/second. 

The channel was reduced by changing the allocation 
scheme to give preference to an identifier that was 
previously used by a process with the same security 
label as the caller. If an identifier from another label 
must be used, the system audits that fact, and ensures 
(by keeping a cumulative count of such occurrences) 
that the bandwidth ceiling isn't exceeded. 

RESOURCE EXHAUSTION CHANNELS 

Resource exhaustion channels are similar to shared 
identifier channels in that they involve a resource pool 
that is common to all security labels. However, in this 
case there is no user-visible identifier for a particular 

[6] Ail bandwidth numbers ire for the specific USL system 
that is being evaluated by NCSC. The system is assumed 
to be idle. Many of the channels will have higher 
bandwidth* on faster processors, and lower band widths 
on busy systems. 

instance of the resource. In general, the sender using 
such a channel consumes all of the resource, and then 
releases a specific amount of it. The receiver then 
consumes the remaining resource to determine how 
much the sender released. 

Many shared id channels can also be exploited as 
resource exhaustion channels, though usually at a lower 
bandwidth. Here are some other examples: 

File record locks. SVR4.1ES supports file record 
locking to allow cooperating processes to coordinate 
access to a file. Since obtaining a record lock requires 
write permission on a file, this mechanism does not, in 
itself, produce a security hole. However, there is a 
fixed, maximum number of record locks that can be in 
existence system-wide at one time, and a single process 
can easily consume them. 

To exploit this channel (and most resource exhaustion 
channels), the sender first uses up all of the system's 
capacity for record locks. It then can transmit logjN bits 

by releasing between 0 and N-l of the locks. The 
receiver then counts how many locks it can create, and 
interprets the result as an log^-bit number.   It was 

estimated that this could transmit as much as 180 bits 
per second. 

The bandwidth of this channel was reduced to an 
acceptable level by auditing the exhaustion of file 
locks, and by keeping a running count of such 
exhaustions and delaying the process if they occur too 
often. 

CPU exhaustion. CPU cycles are a resource that can be 
exhausted, and this is probably the most insidious 
channel that we identified. It produces a fairly high- 
bandwidth channel that is almost impossible to 
eliminate. It is possible to transmit A' bits of 
information on each clock tick, where N depends on the 
particular hardware. Both the sending and receiving 
processes use the SVR4.1ES setitimerO facility to 
request that they receive a signal on each (100 HZ) 
clock tick. When the sending process receives its signal, 
it transmits a number n from 0 to N-l by iterating a 
simple loop 5tn times. It then uses the pauseQ function 
to suspend itself until the next signal. (Note that 
because the sender is never running at the end of a 
clock interval, it never gets charged for any CPU usage. 
It therefore is given higher priority by the SVR4.1ES 
scheduler, and will always preempt the receiver at the 
end of each clock interval when it is awakened by the 
next signal.) 

703 



The receiving process counts how many times it can 
iterate its own simple loop before receiving the signal 
marking the end of the clock interval. If it went through 
the loop m times, it can compute n from Rx-R2m. 

Optimal values for Sv Rx and R2 can be determined 

experimentally. We were able to transmit 500 
bits/second on an idle system, with about 10% of the 
bits received in error. With error detection and 
retransmission, and given that most of the erroneous 
bits were received in blocks, it should be possible to 
send 300-400 bits/second cleanly on a relatively slow 
processor. 

We weren't able to identify any satisfactory treatment 
for this channel that would not degrade system 
performance or change the system functionality offered 
to applications. This channel is extremely sensitive to 
other system activity, and is only practical to exploit on 
a system with very light usage. However, many 
systems are very lightly used during some hours of the 
day. 

CACHE CHANNELS 

Many of the covert channels we found were produced 
by software-constructed caches. These are not 
hardware caches, but rather are in-memory copies of 
various items from disk. This demonstrates one of the 
problems of designing a secure system: many features 
that are added to increase system performance also 
make it easier to leak secure information! 

In general, such caches form a class of resource 
exhaustion channel. If the sending process can bring 
into the cache an entry that can be seen by other 
processes (or can cause enough cache misses that other 
processes' entries are discarded), and if the receiving 
process can detect that there was a cache miss, then 
there is a potential for a covert channel. In some cases, 
a miss can be detected by noticing that the process 
suspended during the reference to the object, allowing 
another process to run. In other cases it requires 
measuring the time it takes to do the reference. 

Directory name lookup cache. The system keeps a 
cache of names that have recently been found in 
directories. Whenever a directory is searched, the 
system first checks the directory name lookup cache 
(DNLC). In general, directories can be read from many 
different security labels. A sending process could 
therefore bring an entry into the cache by doing a 
lookup on that directory entry. The receiving process 
could then look up that same entry and time whether its 
lookup required a disk access. 

This channel was estimated at about 66 bits/second. It 
was partially reduced by changing the method of 
selecting which entry to reuse when a new entry is to be 
brought into the cache. The selection now gives 
preference to an entry that was first looked up by a 
process with the same security label as the one doing 
the current lookup. If a cache entry previously created 
with a different label must be used, that fact is noted. If 
this occurs too frequently, that fact is audited. 

Pace cache. SVR4ES treats main memory primarily as 
a cache of information on disk. Pages are read in from 
disk when needed, and freed from main memory 
(perhaps after the data is written back to disk) when the 
memory is needed to hold a copy of some other disk 
block. Since files can be shared (read-only) by 
processes with different security labels, and it is 
possible to detect if a reference to a page required a 
disk access, this produces a covert channel. 

To use this channel, two processes both open a shared 
file. To send a T, the sending process references a 
page of the file, bringing it into memory. To send a '0', 
it does nothing. The receiving process then references 
the same page, and notes whether the reference 
occurred immediately or required a disk access. This 
sequence can be repeated for each block of the file, or 
with other files. 

Because each bit transferred requires a disk access, this 
channel is limited by the rate at which blocks can be 
read from disk. With typical disk controllers and 
drivers, this won't be more than about a page per 
revolution, yielding a bandwidth of about 60 
bits/second per disk. Given a more intelligent 
controller that buffers entire tracks and returns 
individual blocks to the driver on demand, the 
bandwidth could be much higher. 

This channel would be very difficult to eliminate 
without completely invalidating SVR4ES's virtual 
memory scheme. Fortunately, the bandwidth is low 
enough that it is only necessary to detect possible uses 
of the channel; it doesn't have to be eliminated. It was 
treated by remembering the label of the process that 
first brought any given page in from disk, and then 
auditing the first use of that page by any process with a 
different label. 

DIRECT COVERT CHANNELS 

A number of covert channels were discovered whereby 
processes could directly manipulate some object that 
could be viewed by other lower level processes. Some 
of these were well known system features that had not 
been covered by the design of the security 
enhancements. Some were "undocumented features." 

704 



accessed" time of a file is updated each time the file is 
read, and any process that can read a file can obtain its 
last accessed time. Since processes with different 
security labels can read shared files, this produces a 
covert channel. Given N shared files, the sending 
process could send N bits of information by reading 
those files that correspond to ' l's and not reading those 
corresponding to 'O's. The receiving process could 
then look at the last accessed times of all files to 
determine which had been accessed. 

Unfortunately, this channel is fairly deeply buried in the 
definition of SVR4171. A system that did not update the 
access time as described would not strictly follow the 
various specifications of the SVR4 interfaces such as 
POSK.1*1 It is also very high bandwidth; we estimated 
it at over 1000 bits/second. We considered several 
proposals to reduce the bandwidth to an acceptable 
level, but all were either easily subvertable, or would 
have a disastrous effect on overall performance. 

In the end, it was decided to depart slightly from the 
standard behavior. When the security features of 
SVR4.1ES are enabled, the last accessed time of a file is 
not set when it is read by a process with a different 
security label from the file. Since relatively few 
programs actually make use of the last accessed time, it 
was felt that this was not too large a penalty to pay to 
eliminate the channel. 

Object reuse problem with semaphores. The semopQ 
and semctlQ system calls manipulate semaphores used 
for interprocess communication. Both of these calls 
made use of a static kernel buffer as a staging area for a 
block of data that was copied to or from the calling 
process. On a "set" operation, information was copied 
into the static buffer from the user process and then 
used within the kernel. On a "get" operation, the static 
buffer was filled in with the requested data, and then it 
copied into the user's buffer. 

Under normal conditions, this would not be a problem. 
Unfortunately, the structure defining the data to be 
transferred had several slack areas to preserve 
alignment. These slack areas were never explicitly 
cleared by the kernel, but were copied to or from the 
user's buffer along with the rest of the structure. On a 
"get" operation, the slack areas copied to the user 
would contain the values from the last "set" operation 
done by any user. This creates a fairly obvious covert 
channel. 

This channel was easy to close. The system was 
changed so that the temporary buffer is on the kernel's 
per-process stack instead of being a static shared among 
all processes. This particular example pushes the 
definition of covert channel. Some would call it a 
security hole. We mention it to show why it is 
necessary to do the covert channel analysis on the final 
implementation of the system, not just on a high-level 
design. 

CONCLUSIONS 

The Covert Channel Analysis Tool proved very helpful 
in identifying objects in the SVR4.1ES kernel that could 
potentially be exploited as covert channels. However, 
as with any existing covert channel analysis method, 
finding such a shared object was only the first part of 
the analysis. Once a shared object was identified, it 
often took a fair amount of ingenuity to find an optimal 
scheme for exploiting the channel, and then to estimate 
the resulting bandwidth. (To have actually written a 
program to optimally exploit each would have been 
prohibitively time consuming.) 

After initial development and testing of the tool, the 
analysis of the first internal release required 
approximately 10 staff months. This was a preliminary 
analysis of an early internal release, and much of this 
time was spent debugging and enhancing the tool and 
gaining experience with its use. Subsequent reanalyses 
went faster, even though they were more thorough and 
required documentation of the results. 

Our analysis of the kernel uncovered approximately 65 
covert storage channels. Of these, about 24 were 
completely eliminated, and another 7 required no 
treatment (beyond documentation) because the 
bandwidth was low. 

Even systems that have already undergone some 
significant effort to make them secure still harbor 
covert channels introduced by both interfaces and 
specific code. It appears that an analysis of the same 
order of thoroughness as this must be performed at 
level B2 or higher. 

Many of the fastest channels are CPU speed dependent 
As technologies improve, these will only get faster. 
Better techniques are needed to eliminate, rather than 
just reduce their bandwidth. 

[7] SVR4 is the base on which SVR4.1ES was built. 

[8] IEEEStd 1003.1-1990, ISO Std 9945-1:1990. 

705 



ACKNOWLEDGEMENTS 

Eric Lund, Jozcf Chou, Kelvin Delvarre, and Ellen 
Fisher of USL performed the covert channel analysis on 
later internal releases of SVR4.1ES and supported 
evaluation by NCSC. They were also responsible for 
treatment of channels. Jeff Hostetler and John Johlas of 
Motorola MCG assisted in developing the CCA tool and 
in analysis of the kernel. 

REFERENCES 
[De76] Denning. D. E., "A Lattice Model of Secure 

Information Flow,'' Communications of the 
ACM, 19:5. May 1976. 

[De77] Denning, D. E. and Denning, P. J., 
"Certification of Programs for Secure 
Information Flow,'' Communications of the 
ACM, 20:7. July 1977. 

[Ke83] Kemmerer, R. A., "Shared Resource Matrix 
Methodology: A Practical Approach To 
Identifying Covert Channels", ACM 
Transactions on Computer Systems, 1:3, August 
1983. 

[Po91] Porras, P. A, Kemmerer, R. A., "Covert Flow 
Trees: A Technique for Identifying and 
Analyzing Covert Storage Channels'', IEEE 
Computer Society Symposium on Research in 
Security and Privacy, May 1991. 

[Ts87] Tsai, Chii-Ren, et. al., "A Formal Method for 
the Identification of Covert Storage Channels in 
Source Code", IEEE Symposium on Security 
and Privacy, April 1987. 

706 



TOWARD A MODEL OF SECURITY FOR A NETWORK OF COMPUTERS 

William H. Murray 
Deloitte & Touche 

21 Locust Avenue, Suite 2D 
New Canaan, Connecticut 06840 

WHMurray@DOCKMASTER.NCSC.MIL 

Patrick Farrell 
Department of Computer Science 

George Mason University 
Fairfax, Virginia, 22030-4444 

pfarrell@cs.gmu.edu 

ABSTRACT 

This paper proposes a model for evaluating the security of networks of computers. It is about the security 
of the collection of systems connected, rather than about security of the connecting infrastructure. It 
proposes that: 1) the networks of interest can be modelled as a collection of abstract single-user single-task 
machines connected at their user interfaces; 2) the security of such a net can be evaluated by comparing the 
cost of a successful attack to its value; 3) the cost of attack can be evaluated in terms of the work effort to 
the attacker and that the value can be evaluated by calculating the how much the success reduces the cost 
of subsequent attacks. Illustrations are given of how success against one node reduces the cost of attack 
against other nodes. 

The paper suggests uses for the proposed model. It recommends network security practices that are 
suggested by the proposed model. It also suggests additional areas of research. 

INTRODUCTION 

To say that modern networks of computers are complex and dynamic is to restate the obvious. It is 
difficult to make statements or answer questions about any property of such networks; even such seemingly 
simple questions as size and scope resist easy answers. Nonetheless, mathematical modelling enables us to 
make useful, predictive, though not absolute, statements about even more complex systems, such as the 
economy or the weather 

PURPOSE 

In a paper presented to the National Conference on Computing and Values, Murray* asserted that we need 
to be able to make statements about the security of populations and networks of computers as well as about 
individual computers. He suggested that we need to be able to answer questions such as what happens to 
the security of two systems when they are joined together? What happens to the security of a system when 
it is joined to a network? What happens to the security of the network? 

The ideas presented here are intended to help us answer such questions. They are intended as a start 
toward a mathematical model of the security of a network of computers 

APPROACH 

We begin with an abstract atomic system that is so simple that we can make statements about its security. 
This system is simpler than the kind of multi-user system that we normally use to illustrate computer 
security. It is intended to abstract a set of qualities and characteristics that will be relevant to its role in a 
network while putting aside such otherwise significant characteristics as application and environment which 
are obscured by its membership in a large population of dissimilar systems. 

We are looking for properties that are fractal and composable, i.e., independent of scale, as true of the 
whole as they are of the parts. We are looking for properties that can be used to describe the security of 

707 
Copyright © 1992 William H. Murray & Patrick Farrell. All Rights Reserved. 



Towards a Model of Security for a Network of Computers William H. Murray & Patrick Farrell 

otherwise dissimilar systems. We are looking for properties that are independent of system type, 
management, or qualtiy of implmentation. 

CONTRAST TO OTHER APPROACHES 

We take note of Courtney's first law: "Nothing can be said about the security of a system except in the 
context of an application or environment." However, for our purposes, we assert that it is the generality 
and flexibility of the system that is of interest. For purposes of being able to talk about the network, we 
focus on those properties which are shared across systems, and ignore or conceal those that are unique or 
peculiar to a few. 

This concept of security can be contrasted to that dealt with in the Orange Book*. The Orange Book 
wishes to be able to make absolute statements about single systems; we wish to be able to compare effects 
within populations of systems. The Orange Book describes levels of security in terms of policies and the 
ability to enforce them in terms of functions or capabilities. Our approach is more like that of the 
cryptographer, in which the assumption is that any code can be broken at some cost. We wish to be able to 
make statements about relative cost. That is, we wish to make statements about measures that will increase 
or decrease the cost of attack or the value of success. 

CAUTION TO THE READER 

This paper is directed at the collective security of computers networked together. It concentrates on the 
security of the collection as a whole, with recognition of the contribution towards collective security 
provided by each abstract machine. This paper is not about telecommunications or the connecting 
infrastructure (network), nor is it about computer security in the traditional sense. It is not about system 
security but about the security of networks of security. 

THE SIMPLE MODEL 

In this section we begin to introduce the primitive components of the model. 

THE ABSTRACT MACHINE 

Let M be an atomic single-user single-tasking single-service abstract machine of such strength and isolation 
that the only path of attack is through its user interface. M contains a secret, privilege, or resource, R, of 
value, V, and cost of loss or compromise, L. 

Un-privileged user processes within a multi-user system would be modelled as a collection of such 
abstract machines. The privileged processes on such a machine would be modelled as containing, as 
resources, the entire collection. 

SECURITY MODEL 

Let Ca be the cost of an attack trial and N the expected number of trials required for success. 
We define the abstract machine to be attack secure if the cost of a successful attack, CaN is greater 

than V. That is, a rational attacker will not attack the system if the perceived cost of attack is greater than 
the value of success. As we show, this cost can be explicitly modeled. 

Within successful attacks, we distinguish between penetrations and breaks. We would consider an 
abstract machine to be penetrated if the cost of attack fell below the value of successful attack and for the 
length of time that such condition persisted. We consider the machine to be broken if the condition would 
not remedy itself automatically. Thus, if the attacker were to obtain the password to a machine, the 
machine would be considered penetrated for the life of the password. If access to the machine included the 

708 



Towards a Model of Security for a Network of Computers William H Murray & Patrick Fan-ell 

ability to change the password, and if the attacker changes it, then the machine is broken. The importance 
of this distinction can be illustrated by the following comparison. When my personal computer is in auto- 
answer mode, it is protected by a seven digit one-time password. It has a very high cost of attack. 
However, a successful attack includes the ability to insert a secret door in the one-time password 
mechanism, that is to break the machine. While it might require some special knowledge, and might be 
difficult to accomplish in a limited time, the privilege to do it is inherent in the penetration. The situation 
may not remedy itself automatically and the attacker can continue to use the system at reduced cost. 

Contrast this to an unprivileged user ID on a Multics system using the same one-time password 
mechanism. A successful penetration, i.e., a one-in-ten-million guess, does not include the privilege of 
inserting a secret door. The abstract machine does not include the ability to alter its own logon security. 
Once the session is ended, the cost of attack returns to the old level automatically. The abstract machine 
was penetrated, but it was not broken. 

While this definition of security may appear to be absolute, it is in fact, relative. We may never know 
all of the parameters of the model in the manner necessary to make absolute statements about the security 
of a particular machine. However, we may know enough to make comparative statements about two 
machines. 

This scalar value can be replaced with a time series. Thus, the security evaluation term, C N=V 
becomes C (t)N(t)=V(t) at the time t. (While this is not important when evaluating the security of a 
single abstract machine, it will become extremely important when we attempt to evaluate a network.) 

ASSUMPTIONS 

We note the following simplifying assumptions: 
• The model is limited to things that can happen at the user interface. The user interface is that which 

any user sees when he approaches the system. It includes all of the services that one can get with, or 
without, logging on. It includes even those services that are normally reserved to privileged users if 
they are available a the same interface. We ignore things that might happen at a privileged or local 
interface that would not be visible from the network. 

• An attack is an attempt to obtain any service to which one is not normally authorized. It will usually 
include one or more attempts to logon to the system. Each trial, or associated group of trials may be 
modelled, examined, or evaluated independently. 

• R is the target of attack, the product of successful attack, and that which the owner desires to protect. 
R may be a secret, such as intelligence or a password; a privilege or a capability, such as the ability to 
modify a program or place a paid phone call; it may be a connection or a path to a nearby system; or it 
may be computing capacity, such as might be used to attack a nearby system. For our purposes it is 
monolithic. Since M is single state, then if the attacker has any part of R, he is assumed to have all of 
it. 

• V and L are related but not necessarily equal. The value of R to an attacker may not be the same as 
the cost of loss to its owner. 

• The cost of access to logon is assumed to be part of the cost of attack, constant, and the same for all 
potential attackers. Since this is not true in the real world, the model will have to be elaborated to 
show the components of this cost, and its distribution among attackers. 

• The number of trials for success, e.g., half the size of the logon space, is known and constant; again, 
the model can be elaborated to adjust for uncertainty here. Likewise, the size of the space can be 
increased, within bounds, to compensate for increases in the value of V. However, all other things 
being equal, the bounds on the size of the space will ultimately impose an upper bound on the value 

709 



Towards a Model of Security for a Network of Computers William H. Murray & Patrick Farreii 

of V. That is to say, since there are upper bounds to the size of a password, there are effective bounds 
on the size of V. 

• The number of targets is limited to the single system, M, with value, V. This limit will be relaxed by 
dividing M, adding it to a population, or by joining it to other systems to form a network. 

• We measure work in only in time. The value that the attacker places on his time is not equal for all 
attackers and not available to us. Neither is it necessary for answering the questions that we want to 
answer. 

• The choice of a single user system is used for simplification. The model will be elaborated to account 
for the effect of multiple users 

• A single task machine was chosen to make logon the only security mechanism of relevance. That is, a 
compromise of logon will result in a total loss of V; no other compromise is necessary. This choice 
was made to illustrate the relationship between the cost of attack and the resource. The elaboration of 
the model will have to account for multi-user systems with multiple alternative paths of attack to R, 
and for more complex costs of attack. Conversely, the model will have to be able to account for 
protective security based upon the division of R across compartments within M. 

These assumptions and constraints illustrate some of the dimensions that must be included in a fully 
elaboration of the model. 

THE COST OF A TTA CK 

The model of the cost of attack will be modelled, in part, by modelling the cost of individual trials. This 
cost will include the cost to send a unit of coded data times the number of units in the trial, plus the time 
required to receive and evaluate the response. Thus, for example, the cost of sending six characters is 
higher than that of sending five, the time required to send it at 300 baud greater than that of sending it at 
2400 baud. 

We have defined the cost of attack as the cost of a trial times the average number of trials required for 
success. In its simplest form, Ca ~ Q E[na]. 

The cost of a trial is a function of the resources available to the attacker, knowledge, coded 
information, and capacity. It is related to the protective measures in place. That is, a change in the 
protective measures may alter either the cost of the trial or the expectation of success of the trial. 

If the probability of the success of a trial were to remain constant for the duration of the attack, then a 
simple Bemouilli distribution could be used to calculate the expected value of the number of attempts 
required. 

E[nJ   - ZiO-pr'p = - 
i=0 P 

This is the same formula used in telecommunications analysis to the calculate the expected number of 
retransmissions for a given error probability. 

However, while we speak of the average number of trials for success, there may be a difference in the 
cost of successive trials. Even a trial that does not yield success may yield information that lowers the cost 
or improves the chances of success for later trials. For example, in an exhaustive attack against a 
password, each trial reduces the size of the remaining space and improves the probability of success of the 
next trial. 

In addition, protective measures may not operate the same on all trials. For example, modern systems 
include a number of measures that are intended to raise the cost of sucessive trials. These include: 

• delay the prompt after a failed trial, reducing the effective bandwidth and increasing the cost of 
successive trials^*. 

710 



Towards a Model of Security for a Network of Computers William H. Murray & Patrick Farreli 

• set an alert threshold at a specific number of failed logon attempts for a given userid and then revoking 
that userid; and 

• break the connection after a threshold number of failed attempts, thus adding the cost and delay of a 
re-connection to the next trial. 

Note that these techniques are not intended as an impregnable defense. Rather they are intended to raise the 
cost of attack. However, in a target-rich population they succeed in moving the attacker to other targets 
with lower cost of attack. 

The model must also account for special knowledge or experience available to the attacker. For 
example, attackers know that some passwords are far more likely than others. In the population attacked 
by the Wank worm, one system in five had at least one password equal to the null password or to the 
user ID. Short dictionary (or "sweet list") attacks are a staple^. In order to extend the model to reflect the 
variable costs, we first consider the cost of the attack, which is equal to the sum of the individual trials, 
over the expected number of attacks: 

E[n.l 

1=0 

To calculate each C[ value, we need to consider how the above cost increasing techniques can be modelled. 
As a simplifying assumption we will consider that the primary cost associated with an attack is driven by 
the time required for the attack. This is appropriate, for example, if the attacker had to pay for a long 
distance telephone call during the attack. It is also appropriate if the chance of detection is proportional to 
the duration of the attack. 

A realistic cost formula can be formulated from the following variables: 
KAt '•=    linear cost factor 
MAAT :=    Mean active attack time. This includs the number of characters required to 

send a userid/password pair to the abstract machine's user interface, 
divided by the network bandwidth. 

FailDelay 
NumTries 
ReconnectTime 
KillThreshold 

Time delay inserted after a failed access. 
Number of tries allowed before the communications link is severed. 
Delay cost associated with connecting/reconnecting to the machine, 
number of attempts allows before account is invalidated. 
Attack iteration number. 

_ {KJ^MAAT + FailDelay) + (if(i mod NumTries = 0) then ReconnectTime elseO)]   if/ < KillThreshold 

\ oo if i 2 KillThreshold 

Clearly if the expected number of attacks, E[na], is greater than the KillThreshold, the individual Ci terms 
become infinite, and the summation also becomes infinite. For those cases that are interesting, this yields: 

El%) NumTries 

E[C] = K&l £ (MAA T + FailDelay) +Kht   £ ReconnectTime 

V NumTries     ) 

THE VALUE OF SUCCESS 

A successful attack gives the attacker access to whatever capacity, paths, abstractions and recorded data 
that are implemented in the target. For purposes of the model it is necessary to divide these resources into 
those which reduce the cost of attack against the network and those which do not. While the latter may be 

711 



Towards a Model of Security for a Network of Computers William H. Murray & Patrick Farreii 

intrinsically valuable and influence the attackers propensity to attack this particular machine, only the 
former influences the security of the network. 

Capacity 

Capacity is the most fungible and easy to measure and appreciate of the values in the target. Until 
consumed, i.e., used or wasted, it can be devoted to any purpose. For example, it can be used to reduce the 
cost of attack against another system. 

Identity of the Victim 

The successful attacker obtains the identity of the victim node. That is, he gains the ability to appear as 
that node to other nodes in the network. While under the compromised identity, the attacker is accorded all 
the trust and tolerance that would be accorded to the victim. 

At a minimum, this is the tolerance that would be accorded to any member of the network or 
community. Historically the network has been both orderly and trusting. Most of the behavior has been 
orderly. In part because of this and in part because the network was new and small, users have been 
tolerant of eccentric behavior on the part of other users. They have also been accomodating and helpful to 
other members of the community. Therefore, simply being able to act under the identity of a legitimate 
member of the community is helpful to an attacker. 

At the most, the attacker may gain all of the privileges and trust accorded to the most privileged and 
trusted administrator. 

Identity of the Information 

The amount of information that the attacker gets from coded data is, in part, a function of what he already 
knows. While a bit is the amount of information that reduces uncertainty by half, the recorded code of that 
bit is valuable only if one is able to recognize, i.e., identify, the bit. 

Currency of the Information 

The value of most data will go down with age. For example, even reusable passwords may have a finite 
life. The later in its life it is learned, the lower its value. This leads to at least three alternative models for 
information currency: 

• Linear decay where the value of the information decays at a constant (and potentially zero) rate; 

• Exponential decay, perhaps using a half-life model or other exponential decay; and 

• Abrupt expiration, where at a specific point, the value drops instantly to zero. 

Combinations of two or more of these models may be suitable for specific real world problems. For 
example, a userid/password pair that will expire at a fixed point in the future provides a capacity value that 
linearly decreases. Exponential decay is suitable for information that loses relevance over time, such as a 
data store that contains the network topology as of a given date in the past. Since the network is continually 
revised, the information becomes outdated, the general information in the data store will remain valuable 
after the detailed information is obsolete. 

Scope or Quantity 

All other things being equal, the more data, or the wider its scope, the more value. The value of data will 
normally rise along an "S" shaped curve with quantity. Thus, the more other systems a given target knows 
about, the greater the value of a successful attack against it. The initial, small amounts of information do 
not yield much knowledge (or value). As a critical mass of information is gathered, each datum provides an 

712 



Towards a Model of Security for a Network of Computers William H. Murray & Patrick Farreii 

incremental increase in value. When nearly all the information has been captured, the incremental benefit 
tapers off. Thus the more other systems a given target knows, the greater the value of a successful attack 
against it. 

Development of a formula that maps a linear estimate of information scope onto the "S" curve is easy. 
The difficult part is development of a quantitative metric that maps a given amount of information to an 
estimate of the percentage of the abstract machine's total information. 

MODELLING THE VALUE OF SUCCESSFUL ATTACK 

In modelling the value of successful attack, we make three useful distinctions. First we distinguish that 
part of V that is useful in directly lowering the cost of attack against the network from any other resources. 
For example, information about the network or other machines will lower the cost of attack against thoses 
machines, while otherwise very valuable financial information will not. This latter data may have intrinsic 
value which adds to the attractiveness as a target of the machine, but does not impact the security of the 
network. 

Second, we distinguish between that portion of V which can be modelled as another abstract machine 
and that which cannot. For example, if access to machine A includes cheaper access to B and C than is 
available without access to A, then we would model that access as abstract machines with the new, lower, 
cost of attack. 

Third, we distinguish between those resources whose identity is likely to be known outside the abstract 
machine. For example, if an abstract machine is an instance of a population of similar machines, then 
identities which it shares with those other machines will be widely known and exploitable. For example, 
information in a TCP/IP "host table" would be readily identifiable and exploitable, as it was in the case of 
the Internet worm. 

MODELLING A NETWORK 

In this section we define a network, extend the model, and apply it to the network as defined. The 
definintion of network that we suggest is special, but it does include the networks of interest. 

DEFINITION OF A NETWORK 

We define a network as two or more of our abstract machines connected in such a way that the users of one 
can see the user interface of the others, or an aggregation of such networks so connected. We deal with the 
collection of things connected, rather than with the connecting infrastructure. We deal with networks of 
computers, not networked computing. 

For the moment and for our purposes, we define the network to be so physically secure, protected, or 
isolated that the only viable attack is via the user interfaces. By this means we exclude from the model the 
issues of eavesdropping on the media, violence, subornation, or coercion. We assert that these issues are 
general to remote computing of any kind, rather than peculiar to networking of computers. We recognize 
that there are some among our possible readers who believe these to be the most interesting issues. We beg 
their indulgence and patience. We suspect that by binding some other variables in the model constant, it 
can later be used to examine these interesting issues. 

This definition would not treat a single, abstract machine as a network. It would distinguish between a 
network and a collection of such abstract machines based upon whether or not the machines were connected 
in such a way that the user of one machine could connect to and exploit the user interface of another. 
Based upon this distinction, most multi-user machines would not qualify as networks, since one process is 
not normally able to connect to another without its knowledge and cooperation. On the other hand, two 
connected single user systems might qualify. Two connected multi-user systems might qualify as a 
complex network. 

713 



Towards a Model of Security for a Network of Computers William H. Murray & Patrick Farrell 

For the moment, and as a working hypothesis, we assert that for the purposes of our model, the most 
significant difference between whether these machines are two boxes connected by wire or are 
compartments in a single box is one of bandwidth. That is, all other things being equal, the link between 
two compartments in the same box will support more attack trials per unit time than will a link between 
two separate boxes, but that no other difference is important to our purpose. 

For purposes of this work, it is essential that this definition preserve the significant properties of our 
abstract machine and model or reflect the security propeties of networks of real systems. Our model is 
subject to examination and criticism to ensure that it does so. Nonetheless, it is in the nature of a model to 
emphasize some properties of that being modelled over others. 

DEFINITION OF NETWORK SECURITY 

As with the single abstract machine, such a network is defined as being attack secure if the value of a 
successful attack is less than the cost of such an attack. 

Note that such a level of security does not necessarily prevent all attacks. It does not make the network 
resistant to all attacks. It does not even prevent successful attacks against some systems in the network. 
On the other hand, neither does it require that all components of the system be attack secure in order to say 
that the network is secure. 

The analogy here is to a fishnet rather than to a chain. While each is weakened by the compromise of a 
link, the net can continue to work in the face of many broken threads or knots. Once more, the purpose of 
the model is to ba able to talk about relative, rather than absolute, security. 

AN ILLUSTRATION 

For purposes of clarification it may be useful to apply our model to some existing systems and attacks. 
Consider first one of the Unix systems that was attacked by the Internet wornH. Since those machines 
were not atomic machines, they were, for our purposes, either a collection of abstract machines, or a 
network of such machines. That is to say, sendmail, fingerd, debug, and each of the user processes 
would each be modelled as a separate abstract machine. They would not be modelled as a network because 
they were not connected in such a way that the user of one such process could see the user interface of 
another from that process. Debug would be modelled as an abstract machine within a machine, sendmail. 
On the other hand, any of these abstract machines would be modelled as a network with user processes in 
other Unix machines. The value of a successful attack against debug includes access to all of the processes 
within the Unix machine. 

Note that the real cost of attack in this system was measured in terms of tens to low hundreds of man 
hours. This was obviously and certainly lower than the cost of the loss. Thus, the network was not 
protection secure. While no value was converted to the attacker, it is possible that a small variation on the 
attack might have yielded considerable resource. Therefore, by our definition the network was not attack 
secure. Note also that the penetration of one system lowered the cost of attack against subsequent ones. 
Once the worm succeeded in getting itself executed in a target machine, it gained a path to additional 
machines, knowledge about them, and capacity with which to attack them, i.e., it could and did start attack 
processes against them. 

EFFECT OF NETWORKING ON SECURITY 

We assert that, all other things remaining equal, the relative security of a system goes down when it 
connects to any other system. That is, the population of attackers with connection goes up, the cost of 
attack goes down, and the value of success goes up. The cost of attack goes down because there is more 
capacity to be used in the attack. The value of success goes up because the value included in the target 
goes up by the value of the connection to other targets. 

714 



Towards a Model of Security for a Network of Computers William H. Murray & Patrick Fan-ell 

SPA TIAL RELA TIONSHIP BETWEEN ABSTRACT MACHINES ON THE NETWORK 

We assert that within the context of this model of abstract machines, the proper model is a fishnet, not the 
more common model of a chain. Specifically, a fishnet may have large holes, and may even have a number 
of large holes, while still providing its design function. With a fishnet, some holes cause problems, and 
others do not. This model of network security shares this characteristic. 

As in a fishnet, the potential harm caused by a specific hole is related to the proximity of this weakness 
to others. Additionally, we suggest that the value of an attack is decreased with increasing distance. Many 
mathematical models are available that can show this decrease in value. We suggest that the inverse square 
law, that is often encountered in physical phenomina such as light or other electromagnetic emmisions, is a 
suitable and well understood description for the decreaing value of an attack over distance. We propose that 
rather than a traditional geometric distance metric, an alternative metrics for distance are either "time" or 
"work." These terms are interdependent; either may be used to suit the specifics of the model under study. 
The amount of effort required to set up for an attack, or the exposure and thus the probability of detection 
during an attack, measures the cost to the attacker, and is used as the distance metric. 

USES OF THE MODEL 

We think that the ideas and abas tract ions presented in this paper have a number of useful applications. 
First, we submit that the simple abstract machine and simple security model provide a useful way to think 
about security, i.e., relative rather than absolute. Second, modeling a network as a collection of simple 
abstract machines enables us to isolate and examine properties of the network which are important to its 
security. Finally, they can be used to support the additional research which we recommend below. 

SUGGESTED RESEARCH 

This paper is entitled "Toward a Model..." That is intended to suggest that we do not think or suggest that 
this paper represents completed work. We suggest three paths. 

First, as with most such models, this one can be elaborated in both detail and scope. For example, 
more components of the cost of attack can be identified and described. More important, the results of 
success can be identified, classified, evaluated, and described. The object would be to determine the 
resources that are of use to an attacker, how he might use them, how much they will reduce his cost of 
attack, and how that value to him may be limited or reduced. All of this needs to be rigorously and 
completely described mathematically. 

Second, a simulation can be constructed based upon the model. We believe that the a network 
simulator can be built based upon the properties of the network components and the definition of security 
that we have described. This simulator would enable us to assess how the security of the network responds 
across time to attack. 

Third, experiments can be conducted using the simulator. For example, a network of given topology, 
cost of attack, and value of success can be simulated. The simulator can be used to evaluate the resistance 
of the network to varying kinds of attacks or varying resources available to the attacker.   By holding the 
form and resource of the attack constant, and varying the topology of the network, the experimenter will be 
able to compare the resistance to attack of different topologies. By varying the Logon mechanisms of 
various nodes, the evaluator will be able to measure the cost to the attacker that results from different kinds 
of security mechanisms and determine the effect of their distribution within the net. That is, one could 
assess whether the resistance of the network to attack can be raised by raising the cost of attacking only 
some of the nodes. By holding everything else constant, and varying the privileges and information about 
other nodes in the abstract machines the simulator can be used to measure the effect of such measures as 
compartmenting privileges or encrypting password tables. 

715 



Towards a Model of Security for a Network of Computers William H. MuiTay & Patrick Farreli 

RECOMMENDED PRACTICES 

This analysis suggests a number of practices that can improve the security of networks of computers. 
While raising the cost of attack these measures will have a minimum impact on legitimate users acting in 
the intended way. These practices include: 

• Limit the life passwords; prefer one-time passwords for most uses in networks. 

• Consider dual passwords for privileged accounts. 

• Require cooperation of two people to alter logon programs. 

• Automatically reduce the bandwidth in the face of possible attacks (delaying the prompt is the prefered 
mechanism because it corrects itself automatically; alternatively break the connection, revoke the user 
ID, or otherwise disable the logon); 

• Do not offer any services or information to unknown or untrusted systems or users. Offer GUEST 
and ANONYMOUS services only from systems specifically intended for that purpose. 

• Limit the information that is given to unauthenticated users. Specifically, do not grant access to logon 
IDs, do not tell the user what is wrong with a logon attempt, and do not tell them that an attack is 
suspected. Do not tell them the identity or type of the system or network. 

• For security, compartment the network into subnets, name spaces, and domains that each require there 
own authentication. 

• Prefer multiple user names and authenticators for sensitive applications; use single name spaces for 
user convenience. 

REFERENCES 

[1] Murray, William H., On Computer Security and Public Trust, Proceedings of the National Conference 
on Computing and Values; August 1992, New Haven, CT. 

[2] Trusted Network Interpretation of the Trusted Computer System Evaluation Criteria, National 
Computer Security Center, Ft. Meade, MD, 1987 

[3] Spafford, Eugene H., The Internet Worm Program: An Analysis; ACM Computer Communication 
Review; January 1989; Number 19(1). 

[4] Capek, Peter, Discouraging Penetration Attempts on Interactive Computer Systyems Without Denial- 
of-Service, IBM Technical Disclosure Bulletin, February 1989, Volume 31, Number 9, Page 147-149. 

[5] Stoll, Clifford, The Cuckoo's Egg, Doubleday 1990, New York, NY. 

716 



Towards a Policy-Free Protocol Supporting a Secure X Window System 

Mark Smith 

AT&T Bell Laboratories 
Greensboro, NC 27420-0046 

Abstract 
Keywords: Graphical User Interfaces, X Window System, interoperability, multi level secure. 

This paper proposes a framework for a secure, interoperable X Window System1 protocol. It reintroduces the 
concept of a policy-free protocol within the context of the X Window System with the goal of achieving industry 
consensus on that protocol for secure operation. We claim that this consensus can be achieved without requiring 
vendors to agree on a single standard security policy, much less agreeing on a particular implementation of a 
security policy. 

The policy-free protocol framework and its impact on X Window applications will be proposed and discussed in 
some detail. The paper will also discuss the relevance of this approach to other trusted systems. 

i. Introduction 
The problem of constructing a secure X Window system has been treated in several prior accounts [2, 4, 6, 11]. 
Epstein [4] in particular contains a breakdown of the secure X Window problem by problem area (e.g. mandatory 
access control, discretionary access control, object reuse) and by level of trust (e.g. B1 trust, Compartmented Mode 
Workstation trust, B3 trust). These treatments hint at the problem of creating a secure interoperable X. In order for 
any X Window system to be consistent with X's original design goals, it must be interoperable. That is, it must be 
possible for the user to run an X Window client from any machine on the network where the X Server runs, 
independent of the hardware architecture of the machine the client is running on. See Figure 1 for a possible X 
Window topology. 

Interoperability is attained through the specification of a standard X protocol as defined by the MIT X Consortium. 
As vendors gain more experience with X and desire additional X capabilities, the standard evolves. There is a 
facility called extension that allows a vendor to "burn in" novel X protocol extensions. These vendor-specific 
extensions may be reviewed by the MIT X Consortium for eventual inclusion into a new X standard. When an 
extension is approved and included in the X Window standard, the facilities it provides become effectively 
interoperable. The MIT X Consortium also includes in its "sample server" a set of extensions which are not yet in 
the standard but which are deemed to be of sufficient value to warrant inclusion. A vendor need not (and sometimes 
does not) pass on the MIT sample server verbatim to its customers. Instead, a vendor may choose to select or reject 
any extensions it receives from the MIT sample server. An extension thus becomes effectively interoperable if all 
vendors choose to include it in their delivered X Servers. 

There arc two problems with X Window security extensions: 

1. The MIT X Consortium has historically included only the most minimal notion of access control in its X 
protocol standard. 

2. Several vendors have added access control extensions to the X protocol.   These extensions are not 
interoperable; moreover, they do not necessarily reflect the same security policy. 

Wc propose a framework for the creation of a single X protocol extension that is capable of supporting all the 
security features, attributes and policies that vendors (and their customers) desire. Industry consensus on a protocol 
fitting this framework would yield an X Window extension, leading eventually to an interoperable secure X Window 
system. 

I.   The X Window System is a trademark of the Massachusetts Institute of Technology. 

717 



The proposal defines separable policy-free and policy-defining subsystems. This rearchitecture of security-providing 
facilities is similar to that proposed in [1], [3] and suggested by [12]. In particular, [1] suggests a policy-free 
mechanism for access control with architectural advantages similar to those of our proposal. Perhaps more relevant 
is the fact that X was originally designed based on the principle of a policy-free protocol [7]. X is window 
management policy-free, allowing vendors the freedom to design and develop X window managers however they see 
fit. Though there has been some criticism of policy-free protocols for use in a graphical system, they have the 
distinct advantage of allowing vendors to standardize on relatively non-controversial, mechanistic protocols, rather 
than on much more controversial window management policies, for example. 

Experience has shown that similar difficulties exist when vendors attempt to standardize on a particular protocol 
supporting security attributes or policies. Even in cases where vendors agree on the security policy (e.g. the 
Compartmcnted Mode Workstation policy), they do not necessarily agree upon the protocol, since security policies 
can be implemented using various techniques (e.g. separation vs. fine grained access control) and typically these 
techniques impact the protocol. Furthermore, certain aspects of "standard" security policies may be left to the 
interpretation of the vendor and the accrediting body, and different "subpolicies" may be allowable under the 
standard (for example, access control lists are optional for the Compartmented Mode Workstation). Finally, a single 
vendor may desire to support a customer base demanding different security policies. 

What is desired therefore is a protocol that passes two tests: (1) it must allow the vendor to use whatever technique 
the vendor desires to implement the security policy, and (2) it must allow implementation of the security policy of 
the vendor's choice. It is also highly desirable that the protocol minimally impact the performance of the system. 
We claim that only a protocol passing these tests has a chance to attain vendor consensus leading to interoperability. 

A framework for creating such a policy-free protocol will be proposed in the following section. The protocol's 
impact on the X Server and policy-defining X clients will then be explored, followed by a summary of the expected 
impact on the embedded base of X Window clients (referred to as the COTS, or commercial off the shelf, client 
base). Finally, a generalization of the architectural principle of policy-free interfaces supporting security policies 
will be briefly discussed. 

Throughout this paper, the term "X" will refer to the MIT X Window System, "CMW" will refer to the 
Compartmented Mode Workstation, and "ACI" will refer to Access Control Information. 

718 



graphical display 

machine 3 
vendor C 

Figure 1.     An X Window topology 

2. Proposed Protocol Framework 
2.1 Protocol Overview 

The attempt to specify a protocol that supports various security policies and implementations thereof is similar to the 
functional decomposition methodology of an object-oriented system, or more particularly that of a strongly typed 
system. This decomposition is thus similar to the one described by LOCK [10], which specifies security policy 
based on object and subject type rules. 

In particular, "subjects" and "objects" should be type-classified in a policy-free protocol in order to support a large 
class of labeling security policies. However, such a classification is not sufficient to specify very fine-grained 
policies that make use of object access control lists, or subject capabilities [12]. Therefore, for the protocol to be 
sufficiently general, it must also include the ability to identify ACI on a per-subject or per-object basis. 

There are other issues to consider besides what might be called "pure" access control. The protocol must not 
preclude the construction of a secure infrastructure capable of being accredited. Such an infrastructure must pass 
certain integrity tests; for example, a change to an object's ACI cannot be made while it is being accessed (the 
tranquility property). Also, provision must be made for trusted paths, so that X clients doing trusted I/O have 
provably unspoofable access to the physical display, and so that the X Server has unspoofable access to trusted 
policy-cognizant X clients. Other infrastructure requirements will be introduced in the following sections as well. 

719 



2.2 Architecture 

The key aspect of the architecture (Figure 2) is the construction of a policy-defining client, which we will abbreviate 
PDC. It is this client which provides the basic Access Control Decision Function (ADF) as defined in [3] and [12]; 
the X Server, in nearly all cases, provides the analogous Access Control Enforcement Function (AEF). Note that the 
PDC has the same client/server relationship to the X Server as any other client; it can be similarly relocated to any 
machine on the network. 

f    client 3    j 

f    client 4    J 

machine 1 
vendor A 

machine 2 
vendor B 

Secure Network 

<£ > 

Policy-  \ 
Defining   ) 

Client  J 

rx o> 
\ 1 11 / 

r         ~\ 
graphical display 

machine 3 
vendor C 

Figure 2.     An X Window topology with 
a policy-defining client 

In addition to the server/client relationship, the network over which the X Server, PDC, and other X clients 
communicate must provide certain authentication capabilities. In particular, it must not allow an untrusted 
application to spoof the PDC, and it must allow the PDC to authenticate any other client. This particular 
requirement also implies that the traditional meaning of "X client" must be strengthened: historically, "X client" has 
meant "a connection to the X Server." In theory, the X protocol allows more than one process to communicate on a 
single connection to the X Server, although in practice this capability has not been widely used. In order for the 
PDC to authenticate a client, it must assume that a client is a subject, and therefore there can only be a single 
identifiable client on a connection. The network must provide a way to restrict access to a connection in the required 
manner. 

720 



2.3 Proposed Mechanisms 

The framework for the policy-free protocol will be summarized by high-level functions enumerated below. These 
functions can be considered at the logical level of the Xlib interface [8], and similarly, each one would correspond to 
a particular protocol request or event.2 

2.3.1 Access control mechanisms (including cut and paste) The proposed framework implies that the X Server 
assume the role of Access Control Enforcement Function (AEF) and that the PDC be the Access Control Decision 
Function (ADF). Basically this means that the X Server sends an event when a subject attempts to access an object, 
and that the PDC replies with a request indicating (1) whether the access was granted, and (2) if not, what error 
condition is represented by the access denial. 

This separation of duty allows a clean implementation of mediated policies. The most well-known of this class of 
policies is the CMW cut and paste policy. In this policy, when a subject attempts to paste previously cut data into a 
target window whose security classification differs from that of the source window, an interactive window session is 
required before the paste operation can complete. This interaction reminds the user of the source and target window 
classifications and asks the user to verify the reclassification. Such an interaction can be handled cleanly and 
without race conditions if the PDC initiates the interactive verification session upon receiving the appropriate access 
control request. Other interesting mediation policies can be similarly implemented. 

The separation of duty also allows a straightforward implementation of floating information labels as specified by 
the CMW requirements. In particular, the PDC can implement the policy whereby a successful "read" access to a 
particular object by a particular subject results in a change to the ACI of the subject, based on the relationship 
between the client's current ACI and the newly accessed object's ACI. 

The following mechanisms are sufficient to implement access control: 

• Request Access! entitylD, entityType, clientll), accessMethod) event. The X Server sends this "event" (really 
a request) to the PDC whenever a subject (specified by clientll)) attempts to access an entity3 (specified by 
entitylD). The X Server also sends the entity's type (entityType). 

Entities in the X Server must be classified by type in order to take advantage of type-based policies. The 
decomposition of X Windows entities into types has been treated elsewhere (e.g. [2]) and is outside the scope of 
this paper. We generalize the usual object decomposition somewhat by allowing the definition of subject access 
policies. This is necessary in order to implement a generalized form of privilege described later. 

• Access A nswer( yesno ) request. This "request" (really a reply) is the PDC's reply to the Request Access!) 
policy question, yesno contains the answer, either 'yes' or an error return defining what the access denial policy 
is for this particular access request. 

Note that the PDC need not send an immediate AccessAnswer() reply upon receipt of a RequestAccess(). Rather, 
as described above, it can implement a mediation policy on the access, or even delay the request to throttle a covert 
channel, before replying. 

A Request Access!) might also signal the PDC to create a new access control binding. For example, the successful 
attempt to create a new object would typically cause the PDC to synthesize new ACI (perhaps from the subject's 
ACI) to be bound to the object. 

2.3.2 Access control information binding mechanisms There must be a way for X to bind ACI to subjects and 
objects. In order for the protocol to remain policy-free, this ACI must be uninterpreted by the X Server. The 
protocol should therefore provide only a transport mechanism and binding semantics for ACI. 

2. A request is a protocol message from an X client to the X Server, an event or response is a protocol message from the X Server to 
an X client. The X protocol is asynchronous; the result of a failed request is typically an error response. Note that a protocol 
message is classified as a request or as an event based solely on whether it is input to or output from the X Server. 

3. An entity is a subject or an object. 

721 



An important consideration is the location of the bindings between entities and ACI. These bindings should be 
stored in the PDC, since it must be able to make access decisions based on current bindings. If the X Server stored 
the bindings, it would have to verify the validity of every AccessAnswerO request by checking the existence of the 
accessed object 

The ACI binding may be rather static (e.g. Bell-LaPadula mandatory access) or may be rather dynamic (e.g. CMW 
subject floating information labels or object ACLs). The potential for dynamism requires that the binding 
mechanisms be as general as possible, allowing the PDC fine-grained control over the ACI. 

The following mechanisms are sufficient to implement ACI binding policies: 

• BindClientACI( clientID, client ACI ) event. The X Server sends this event to the PDC. The event contains 
the handle of a client (a clientID) that just connected to the X Server, and the ACI of this client as reported/rom 
the network. Thus, a network supporting a secure X Window system must be able to provide this service; 
historically, similar services have been proposed for secure network services such as MAXSIX [13]4. The PDC 
binds the client ACI to the client denoted by clientID5. 

• BindObjectACI( objectID, objectACI) event. This event is similar to BindClientACIO and requires that the 
PDC bind the access control information to a particular X Server object. It is expected that this event is the 
result of a privileged client's desire to change the ACI of a particular object (see "Policy emulation mechanisms" 
section below). 

The PDC is also capable of binding object ACI unprompted; e.g. as a side effect of a successful 
Request AccessQ event requesting that a new object be created. In that case, a reasonable policy would be that 
the newly created object is bound to ACI derived from the creating client's bound ACI. 

2.3.3 Privilege assertion mechanisms There are two general classes of privilege which are relevant to the protocol 
framework. First, there are subject privileges which are used by the PDC in order for it to implement windowing 
security policy. Many vendors desire to define fine-grained privilege policies which allow clients the right to enable 
and disable their own current privilege set {privilege bracketing: see [4]). The following mechanism is sufficient to 
allow in-band (that is, X protocol) privilege bracketing: 

• BindClientACK client All ) request. This request has syntax similar to the BindClientACIO event described 
above. In this case, the client requests that its privilege set be changed as specified by the clientACI. The X 
Server forwards this request to the PDC using the BindClientACIO event. The PDC defines a policy which 
decides whether to honor the ACI (privilege) change request, presumably based on the ACI already bound to the 
requesting client. 

Note that it is possible for the PDC to grant fine-grained policy-defining privileges to other clients as it sees fit using 
only the mechanisms supporting this first class of privilege6. 

4. In general, any secure distributed system must include a networked identification and authentication service; otherwise a remote 
trusted server cannot enforce policy. A formal definition of this network service is not an X interoperability issue and is beyond the 
scope of this paper. 

5. The format of the client ACI should be general enough to handle all types of access control information in a machine-independent 
fashion. The formal specification of this format should be defined by a standards body and will not be further explored here. 

6. One possible use of this mechanism would be to support a complex privilege-bracketed information labeling scheme. For example, 
a vendor may wish to implement a policy whereby the xterm terminal emulator will change the visible information label in a 
window based on the information in that window. One way to implement this policy is as follows: (I) xterm is granted the "create 
TCB-private window" and "change privilege to write to TCB-private window" privileges by the secure OS. (2) The xterm is bound 
to these privileges when it connects to the X Server. (3) xterm creates a TCB-private label window, which the PDC allows. (4) 
When it notices that it must write an information label, xterm requests that it be given the right to write into the TCB-private area. 
The PDC grants the privilege. (5) xterm writes the new information label into the TCB-private window, which the PDC allows. 
(6) xterm relinquishes its right to write into the TCB-private window. It is worth noting that the X Server was never aware of the 
semantics of either of the privileges used in this scenario. 

722 



The second class of privilege is the class of policy-defining privileges, in particular, the privilege to be a policy- 
defining client. A mechanism must exist allowing the PDC to declare itself as a PDC to the X Server. The 
following mechanism is sufficient to support the policy-defining privilege: 

• AssertPrivilegeO request. This request simply informs the X Server that the requesting client wishes to be the 
PDC. The first client requesting the privilege is granted the privilege. If the request is not granted, the 
requesting client receives a failure notification. 

It is required that the underlying secure operating system provide a trusted path and trusted startup semantics so that 
the PDC is guaranteed to be the first X client to send this request (One possible implementation of this trusted path 
would be for the UNIX7 login program to start up the PDC, which would in turn start up the X Server and send it the 
AssertPrivilegeO request. Should a spoofing PDC intercede, the trusted PDC would receive a failure notification 
and would be able to terminate the session and audit the spoof. Since the real PDC is using an underlying network 
trusted path, it can trust that the reply from the AssertPrivilegeO is genuine.) 

2.3.4 Policy cognizance mechanisms There needs to exist mechanisms whereby a client can be cognizant of the 
policy that PDC defines. An example of such a client would be a gadget manager, where a gadget is an object 
defined by the client (and whose type is not known by the X Server). A client may define a gadget such that it 
emulates an X Window, for example. Such a client would need to know what window policy is being defined by the 
PDC in order for it to emulate the same policy for the objects it defines. 

The mechanisms to support this cognizance capability are basically extensions of mechanisms already defined. 
These mechanisms are: 

• RequestAccess( entity Type, entityACI, clientACI, accessMethod ) request. This request has syntax similar to 
the Request Access*) event described previously. In this case, however, the policy cognizant client sends the 
request to the X Server, which forwards it to the PDC. The PDC then sends the reply back to the X Server as 
defined above. Note that the policy cognizant client must specify the type and ACI of the accessed entity, and 
the type of the accessing client, in order to find out what policy the PDC enforces. 

• Access A nswer( yesno ) event. When the X Server receives the answer from the PDC, it forwards it back to the 
emulating client as an event. 

• GetACK entitylD ) request. The policy cognizant client requests that the ACI bound to entitvll) be returned to 
it. The X Server forwards the request to the PDC. It is expected that the PDC will require that the requesting 
client pass access control checks before it returns the bound ACI. 

• BoundACI( entityACI) event. The entityACI is returned to the requesting client; or if the PDC disallows the 
request, null ACI is returned. 

• BindObjectACI( objectID, object ACI ) request. This request allows the policy cognizant client to request that 
the PDC bind new object ACI to the specified object. It is expected that the PDC will require that the policy 
cognizant client possess an appropriate privilege. 

The X Server is required to mark the AccessAnswer() and BoundACI() events with a tag indicating that the answer 
is genuine; otherwise a malicious client could use the generic X Window event mechanisms to spoof the PDC. 

These mechanisms provide a simple method for a client to find out what policy the PDC is defining. For simple 
policies (e.g. strict MAC with a few labels), this method is sufficient; for more complex policies, it may be necessary 
for the policy defining client to make assumptions about the PDC policy. The problem is analogous to the problem 
of a client that wishes to be cognizant of the window management policy; in that case, the X Protocol also provides 
only basic information about the policy and a client needing to know more would have to make assumptions based 
on the documentation describing the window manager. 

7.   UNIX is a trademark of Unix System laboratories. Inc. 

723 



2.4 Backward compatibility 

It is important for an X Server implementing the above mechanisms to maintain a backward compatibility mode so 
that customers can choose to enable or disable the security policy as desired. The backward compatibility mode is 
simple in this case: if no client declares itself as a PDC, the X Server will not issue any Request AccessO events, 
and the server will implement its original policy. Also, should a policy cognizant client issue a Request AccessO or 
GetACI() request, the X Server will always return an AccessAnswerO yes or BoundACIO null, respectively. This 
retains interoperability in backward compatible mode. 

2.5 Security through encapsulation or separation 

Several vendors have attempted to implement security policy by encapsulation or separation, whereby the X Server 
runs untrusted. In an encapsulation architecture, there is typically a small, trusted X Server emulator which handles 
a limited set of trusted windowing operations [4]. Alternatively, for the separation architecture, a secure network 
and trusted X clients could be configured to implement secure windowing policy, without the need to implement a 
multilevel X Server. 

These architectures can be made interoperable by defining a simple PDC that emulates the original X Window 
policy by giving a "yes" answer to any policy questions. (A PEC must be defined; otherwise, another client could 
spoof the PDC simply by doing an AssertPrivilegeO request.) In general, encapsulation or separation architectures 
are defining virtual machines, where individual clients (even security-cognizant ones) should not be aware of the 
underlying window security policy. 

2.6 Performance 

The proposed protocol framework has performance implications. In particular, nearly every X Window request will 
cause the generation of one or more RequestAccess()/AccessAnswer() transactions. This potential performance 
problem can be solved or mitigated in several ways. 

The first way is by taking advantage of local configurations. Typically, a machine supporting the X Window System 
also supports an in-memory local client connection facility, whereby clients running on the same machine as the X 
Server communicate via shared memory. If the X Server and the PDC are on the same machine, the 
Request AccessO overhead should be considerably lessened. 

The second way, which is an extension of the first, is for X terminals to support the proposed protocol8. Typically, 
X terminals provide enough memory for some clients to reside in the terminal firmware along with the X Server. X 
terminals also often provide downloading capabilities. Such capabilities could be used to create an X terminal-local 
configuration similar to the first method above. In this case, the performance should be even better, because the X 
terminal is dedicated to X Window operations. 

The third way is for the X Server to provide an access decision cacheing facility, where the PDC's prior decisions 
are remembered by the server for later decisions. It is expected that many Request Access()s will be identical (or at 
least that the relevant ACI will be identical for many RequestAccessOs). so there would be a high cache hit ratio 
over the lifetime of an X Window invocation. 

While it is possible to define a reasonable cacheing scheme to take advantage of these properties, it is not yet clear if 
it is really necessary. Such a scheme would complicate the protocol9, and in order for the scheme to be 
interoperable, vendors would have to agree on a particular cacheing protocol, perhaps before the problem is 
completely understood. For these reasons, we have chosen not to include a cacheing scheme in the proposed 
framework. 

8. The possibility of this happening is largely predicated upon the protocol being standardized by the MIT X Consortium as described 
earlier. 

9. This complication would have to include, among other things, a cache flushing mechanism to allow the implementation of time- 
based policies such as RELEASEABLE AT <time>--see [3]. 

724 



The fourth way is to implement the PDC not as a separate client but as a dynamically loadable library linked to the 
X Server. This method has been prototyped by the author, using library procedure calls in place of protocol 
transactions between the X Server and PDC, as a basic proof of concept of the protocol interface and as a simple 
performance modeling mechanism. The prototype implemented a very simple DAC policy. It did not contain the 
policy cognizance mechanisms. The prototype confirmed that many Request Access) I/Access Answer!) transactions 
occur in the startup phase of the X clients from the standard MTT distribution. However, after this small initial 
delay, no other delays based on this simple policy were noticeable. More performance modeling must be done with 
more complex policies before the mechanisms can be deemed practical. 

3. Implications for X Server and Policy Defining Client 
The proposed framework makes certain assumptions about the behavior of the X Server and the PDC. 

First, the framework does not indicate what, if any, steps should be taken by the X Server or the PDC to alleviate 
denial of service attacks. For example, the framework does not dictate that only trusted clients be able to use the 
XGrabServerO10 request. There are many other ways that a malicious client could degrade service through normal 
X Window requests. For the proposed framework, the X Server should be able to translate at least some of these 
denial of service problems into access requests that the PDC can act upon. For the example above, one reasonable 
solution would be for the X Server to define a SERVER object type and to issue an RequestAccess!) requesting 
WRITE access to that SERVER object for the requesting client. The PDC can then decide if it should restrict access 
to this particular operation. 

To generalize somewhat, the proposed framework assumes that the decomposition of the X Server into objects, 
object types, and access methods be done in such a way that all reasonable policies can be implemented. It is not 
clear by which criterion one should classify policies as reasonable; however, experience with existing secure X 
Window system models should be very helpful in this regard. One possible difficulty here is the creation of an X 
Server that is cognizant of the relationship between requests and events so that covert channels can be treated as 
access requests11. 

A further assumption is that the infrastructure (the secure OS and the secure network) provide facilities that do not 
compromise the security policies defined by the PDC. For example, there must be a trusted path to the PDC so that 
another client cannot spoof it. Also, the X Server must not allow access to an object when that object's ACI is being 
bound (the tranquility property). Finally, there must be a trusted path between the X Server and the physical display 
to preserve the integrity of any security relevant output (e.g. visible labels) or security relevant input (e.g. a security 
marking created at the user's discretion). 

It is important to note that the implementation of the proposed framework alone is not sufficient for the X Window 
System to be certifiable past B1 or B1/CMW. A modular restructuring and covert channel analysis of the X Server, 
or possibly the implementation of an encapsulation or separation trusted X architecture as previously described, 
would also be necessary preconditions for B2 or B3 certifiability. 

4. Implications for X Window System Embedded Base 
A major advantage of a policy-free interface to the X Server is that the vendor can decide what impact the security 
policy will have on the embedded COTS (commercial off the shelf) client base. For example, the vendor may 
choose to implement a restricted form of the ss-property by making all objects invisible to a client unless their MAC 
labels are equal. Such a policy would tend to be useful in a system where the customer site is interested in strict 
separation of labeled data; however, such a policy has an impact on administrative COTS clients such as xlswins that 

10. XGrabServer<) tells the server to listen only to the client issuing the request until further notice. 

11. Epstein |4] notes that the most difficult of the covert channels is the window exposure problem whereby one client can signal 
another client through the exposure of a previously covered window. The X Server must have an RequeslAccessQ strategically 
placed so that the PDC can determine the ACI of the exposing client and of the exposed window, and make a decision based on 
their relationship. 

725 



is different from the impact of a "read down" policy. 

Often, the vendor will be choosing between defining a policy that reports that an access failure is due to the 
nonexistence of an object, and a policy that reports that the failure is due to a security violation. The vendor also has 
the opportunity to construct clever subpolicies such as (for example) defining certain objects as public, in order to 
provide greater compatibility with a particular COTS client. 

The vendor can also make use of sophisticated policies in the attempt to provide compatibility. For example, a 
vendor willing to analyze the behavior of a particular COTS client might write a PDC defining a particular privilege 
that allows the client to access data that the invoking subject could not. 

s. Implications for Other Trusted Systems 
It has been noted [2] that the historical absence of a security policy has hampered the effort of reaching a consensus 
on a secure X Window system, largely because vendors have tailored the X protocol to provide the level of security 
and compatibility that they thought necessary. However, it is also true that the absence of a standard protocol has 
allowed vendors to explore many implementation possibilities, and in so doing there are now a set of de facto 
requirements for the support of various policies and implementations in any standard. From this point of view, the 
X Window system is in a superior position relative to other systems with premature de facto standard policy 
interfaces. Probably the best example of a premature policy standard is the UNIX discretionary access control 
policy and implementation, which (1) cannot be changed, and (2) cannot be described in fewer than ten complex 
rules(!). 

It is much easier to add (re-engineer) a new policy interface than it is to change (reverse engineer) an existing one. 
The reverse engineering problem is that the goals of security (requiring a clear formulation) and compatibility 
(requiring no change to an old, unclear formulation) are at odds. This in turn implies that a rearchitecture of an 
existing system such as UNIX along the lines of the proposed framework would be problematic at best. The 
problem has been faced by the ORGCON prototype project [3] (among others); in that case, architectural purity was 
sacrificed for expediency. 

For newer trusted systems, the methodology implied by the proposed framework has general applicability. 
Specifically, the trusted system designer is forced to face the following question: Given a target policy problem 
space, what is the simplest and best-performing mechanism that can be built that will support the entire policy 
problem space? It has often happened that the general applicability of a trusted system is not realized until it is 
fielded and new security requirements are generated based on field experience. The separation and decomposition 
methods described above would be a hedge against this eventuality. 

6. Conclusions 
By abstracting the security policy decision-making function away from the policy enforcement function, a simple, 
mechanistic interface will often become apparent Such an interface has the potential of being both non- 
controversial and extensible to a large class of security policies. 

We examined the effects of constructing such an interface for the X Window System, whose very reason for 
existence is to support a large, distributed, heterogeneous, open, and evolving graphical user interface environment. 
The approach appears to be most promising in systems with those qualities; the applicability of the approach is less 
evident in systems that are relatively small, monolithic, proprietary, or unchanging over time. 

References 
[1]   Grenier, G., R. C. Holt, and M. Funkenhauser, Policy vs Mechanism in the Secure Tunis Operating System, 

IEEE, p. 84, 1989. 

[2]   Faden, G., Reconciling CMW Requirements with Those of XI1 Applications, Proceedings of the 14th 
National Computer Security Conference, Washington, D.C., October 1-4,1991. 

[3]    Abrams, M. et al, Generalized Framework for Access Control: Towards Prototyping the ORGCON Policy, 
Proceedings of the 14th National Computer Security Conference, Washington, D.C., October 1-4, 1991. 

726 



[4] Epstein, J. and J. Picciotto, Trusting X: Issues in Building Trusted X Window Systems or What's not Trusted 
About X?, Proceedings of the 14th National Computer Security Conference, Washington, D.C., October 1-4, 
1991. 

[5] Rosenthal, D., LINX-a Less INsecure X server. Sun Microsystems, April 1989. 

[6] Picciotto, J., TrustedX Window System, MTP 288, The MITRE Corporation, February 1990. 

[7] Scheifler, R. and J. Gettys, X Window System, Digital Press, 1990. 

[8] Gettys, J., R. Scheifler, and R. Newman, Xlib-The C Language X Interface, Silicon Press, 1989. 

[9] Grauhart. R., J. Berger, and J. Woodward, Compartmented Mode Workstation Evaluation Criteria, Version 1 
(Final), DIA Directorate for Information Services, 1991. 

[10]    O'Brien, R. and C. Rogers, Developing Applications on LOCK, Proceedings of the 14th National Computer 
Security Conference, Washington, D.C., October 1-4,1991. 

[II]   Carson, M. et al, Secure Window Systems for UNIX, Proceedings of the 1989 Winter USENIX Technical 
Conference, San Diego, CA, Jan 30-Feb 3,1989. 

[12]   Access Control Framework, CD10181-3, ISO/EEC JTC 1/SC 21 N6188, June 24, 1991. 

[13]    Department of Defense, Department of Defense Trusted Computer System Evaluation Criteria, DoD 
5200.28-STD, December 1985. 

[ 14]    DNS1X 3.0 Architectural Overview, Rev 1, Secure Ware, April 1992. 

727 



USE OF A CASE TOOL TO DEFINE THE SPECIFICATIONS OF A TRUSTED 
GUARD 

Robert Lazar James H. Gray, III 
The MITRE Corporation Computer Sciences Corporation 
6301 Ivy Lane, Suite 304 10110 Aerospace Road 
Greenbelt, MD 20770 Lanham-Seabrook, MD 20706 
Contract No. NASW-4358 Contract No. NAS-5-31500 

Abstract 

The authors of this paper were given the task of developing verification documentation that 
would serve the needs of system maintenance, but would also have the characteristic of being 
demonstrably correct. The result is a mathematically rigorous system specification using the Ward- 
Mellor variation of the Yourdon-DeMarco notation. The information content of this specification is 
virtually identical to that of an earlier system specification written in a formal specification 
language. In addition, the information content of this specification is computer program 
accessible, making feasible the development of an automated theorem prover. 

Keywords: CASE Tools, Guard Processor, RAP, Restricted Access Processor, Structured 
Design, Trusted Software, Verification 

INTRODUCTION TO THE RESTRICTED ACCESS PROCESSOR (RAP) 

In December 1979 the National Aeronautics and Space Administration (NASA) and the 
Department of Defense (DoD) established the Network Security Ad Hoc Working Group 
(NSAHWG) to evaluate the impact of the DoD security requirements on the NASA Tracking and 
Data Relay Satellite System (TDRSS). One of the NSAHWG recommendations led to the 
development of the Restricted Access Processor (RAP) security guard at the Goddard Space Flight 
Center's (GSFC) Network Control Center (NCC). The NCC is a cleared facility that schedules 
and monitors the use of the TDRSS facilities, including support for Space Shuttle missions. The 
uncleared users must communicate with the NCC through the RAP in order to ensure that the 
unclassified message traffic strictly adheres to predetermined message formats and contents [4, 5]. 
The RAP received its Designated Approving Authority (DAA) accreditation in March 1986 and has 
operated as the automated NCC security guard since that date. 

DESCRIPTION OF THE ORIGINAL VERIFICATION DOCUMENTATION 

At the top of the RAP's original formal verification documentation stands the Air Force 
Security Policy for the RAP [8]. The essence of the Air Force Security Policy was translated into 
the RAP Formal Security Model [8], an abstract mathematical model written in the SYSPECIAL 
specification language [10, 15, 18]. A more concrete description of the RAP's security states and 
transition rules is found in the Top Level Specification (TLS), also written in SYSPECIAL [12, 
16]. A semi-automated theorem proof checker was developed to prove that the TLS was consistent 
with the RAP Formal Security Model [13,17]. The TLS views the security kernel of the RAP as a 
single black box. It models the RAP as a state machine. The SYSPECIAL specification language 
is built around the first order predicate calculus but has a syntax reminiscent of high order 
programming languages like PASCAL. 

Between the RAP's original formal verification documentation and its corresponding software 
implementation a voluminous set of informal verification documents was developed. The Second 

728 



Level Specification (SLS) and Third Level Specification (3LS) documents (both in SYSPECIAL) 
described the RAP's security kernel at the processor and task levels, respectively. The TLS/SLS 
Correspondence and the SLS/3LS Correspondence documents painstakingly drew parallels 
between state transitions at one level with the more detailed state transitions at the next lower level. 
The task-level 3LS document was translated into English language Assertions. For each transition 
rule in the 3LS the Assertions described the initial conditions and the resultant final effects. The 
last verification step was accomplished by writing the English language Arguments, a series of 
task-specific documents which argued that the software implementation satisfied all of the desired 
properties as stated in the Assertions. 

DESCRTPTION OF THE STREAMLINED VERIFICATION DOCUMENTATION 

Because the original RAP verification documentation proved to be too difficult to maintain due 
to its sheer volume as well as its highly abstruse nature, the RAP project manager at GSFC decided 
to pursue the development of a streamlined and simplified verification methodology. 

As the new verification documentation was to also serve as the main documentation for the 
maintenance of the RAP system, it also had to have the characteristics of good system 
documentation. Whereas the original verification documentation was voluminous and abstruse, the 
new verification documentation was to be concise and readable. Whereas the original 
documentation was difficult and costly to change, the new documentation would be easy and 
inexpensive to change. In addition, the new documentation would have to be demonstrably 
correct. Thus two traditionally separate kinds of documentation would be combined into one. It 
was expected that tremendous savings in time and costs would be realized for the whole process of 
maintaining the RAP system. 

A committee of RAP contractors was formed called the RAP Methodology Working Group 
(RMWG). The RMWG realized that the security requirements for the RAP had been formulated 
prior to the publication of the DoD Trusted Computer System Evaluation Criteria (i.e., the "Orange 
Book," [6]) and that the RAP verification documentation could not easily be retrofitted into a strict 
conformance with any Orange Book security level. Nevertheless, the RMWG felt that it was 
valuable to follow the spirit of the Orange Book as closely as was feasible [2, 3]. 

The Computer Security Center document CSC-STD-004-85 (commonly called the "Yellow 
Book," [7]) suggests the B2 level as a minimal documentation level for the RAP since the RAP is a 
"closed system" which protects data rated as high as SECRET from users who may be uncleared 
(Table 7 p. 21 of [7]). However, in the "Design Specification and Verification" sections of the 
Orange Book, the only difference between the B2 and B3 descriptions is the following additional 
B3 statement: "A convincing argument shall be given that the DTLS [Descriptive Top Level 
Specification] is consistent with the model." The RMWG decided to emulate the B3 verification 
documentation level. The B3 Design Specification and Verification requirements as given by the 
Orange Book may be summarized as follows: 

1. There shall be a formal model of the security policy which is "proven consistent with its 
axioms 

2. There shall be a DTLS which is "shown to be an accurate description of the TCB 
[Trusted Computing Base] interface." 

3. There shall be a "convincing argument" which demonstrates that the DTLS is consistent 
with the formal model. 

729 



Requirement 1 is met by the fact that there is a mechanism for proving the TLS consistent with 
the much smaller RAP Formal Security Model. The RMWG decided to change nothing with 
respect to how the RAP satisfied requirement 1. However, for requirements 2 and 3, the RMWG 
decided to utilize the CASE tool technology to develop a DTLS for the RAP. Requirement 2 
would then be satisfied by showing that each object in the DTLS mapped to an implementation in 
the code; similarly, each code segment would be required to map to an object in the DTLS. A 
similar correspondence would need to be developed between the formal model and the DTLS, 
thereby providing the Convincing Argument demanded by requirement 3. 

An overview of the new verification documentation and its derivation from the old is shown in 
Figure 1. Certain elements of the old documentation are carried over unchanged into the new. 
These include the Security Policy, the PDL, and the code. The new Formal Security Model is 
constructed from the old Formal Security Model and the old TLS (see [19] for a discussion of the 
abstract and concrete parts of the Formal Security Model). The DTLS is completely new. The 
elements of the old documentation shown in the dotted box (SLS, 3LS, Assertions, and 
Arguments) are being discarded because those documents are the most voluminous and have to be 
maintained manually. The DTLS, Convincing Argument, and Traceability Tables provide the new 
bridge between the Formal Security Model and the code [1,9,14]. 

DEVELOPMENT OF THE DESCRIPTIVE TOP LEVEL SPECIFICATION 

The DTLS is the highest level document outlining the implementation of the design imperatives 
set forth in the concrete part of the Formal Security Model. Its language is the Yourdon-DeMarco 
notation of Data Flow Diagrams, State Transition Diagrams (STDs), Decision Tables, and 
structured English [11, 20]. It is the primary design document for the RAP. The DTLS follows 
rigorously from the concrete part of the model, but unlike the SYSPECIAL specification language 
of the model, it is readily usable by any programmer or analyst schooled in the Yourdon-DeMarco 
methodology. 

The Ward-Mellor variation of the Yourdon-DeMarco notation can be as mathematically exact as 
any formal specification language. The Data Flow Diagrams unequivocally define the genesis, 
transformation, and disposition of every piece of data. The STDs and Decision Tables can give an 
unambiguous definition of any state machine. The data dictionary ensures that every entity is 
defined, and the CASE tool enforces the data dictionary definitions. 

Key to the success of this project is being able to show by "Convincing Argument" that the 
DTLS is consistent with the Formal Security Model and also to show by means of the Traceability 
Tables that the PDL and code are consistent with the DTLS. 

The SYSPECIAL specification language is built around three kinds of entities: VFUNS; 
OFUNS; and Function Definitions. 

The VFUNS are value functions (i.e., data structures) which collectively define the state space 
of the RAP at any given point in time. All security-relevant actions of the RAP either transmit data 
across the security boundary or change a value of one of the VFUNs. 

The OFUNs specify the operational functions by which the RAP achieves its objectives. They 
define the concrete part of the Formal Security Model. At the beginning of each operation, the 
RAP is at a certain point in the state space. Local assertions in the OFUNS determine whether or 
not, given the RAP's position in the state space, the operation can proceed. The effect of the 
operation is to change the RAP's position in the state space. 

The Function Definitions provide the semantics of the Formal Security Policy Model. Some of 
the Function Definitions are predicates, mapping from statements in SYSPECIAL to the values 

730 



TRUE and FALSE. Other Function Definitions map from points in the RAP state space to other 
points in the RAP state space. 

AIR FORCE 
SECURITY 

POLICY 

FORMAL SECURITY MODEL 

ABSTRACT PART 
(AXIOMS) 

OLD SECURITY MODEL 

PROOF CONCRETE PART 

OLD TOP LEVEL 
SPECIFICATION (TLS) 

r 
i 
i 

r 
i 
i 

SLS 
3LS 
ASSERTIONS 
ARGUMENTS 

I 
I 
I 
L. 

1 
I 
I 

CONVINCING ARGUMENT 

DESCRIPTIVE TOP 
LEVEL SPECIFICATION 

(DTLS) 

TRACEABILITY TABLES 

PDL/CODE 

Figure 1. Overview of the New RAP Documentation and Verification Methodology 

Note: Elements of the old methodology that are being dropped are shown in the dotted box. 

The DTLS was developed one functional area at a time. Every effort was made to preserve 
intact the meanings of the SYSPECIAL specification statements. The first step was to sort the 
OFUNs of the TLS into groups of operations that for each group accomplished one global 
function. For each functional area, a first cut at the DTLS diagrams was made based on the TLS 
and the SLS. The corresponding software was then consulted to confirm, correct, or refine the 

731 



diagrams. Almost always, the inspection of the code uncovered misinterpretations of the TLS or 
SLS which had to be corrected. The development of the DTLS was thus an iterative process. The 
CASE tool was invaluable in keeping the set of hierarchical diagrams balanced. For functional 
areas not yet developed, a stub was introduced as a placeholder. 

OPERATIONS 
CONSOLE 

SYSTEM 
RESPONSE 

CONSOLE 
COMMAND 

MSS \ 
BOUND 
BLOCK 

.VALIDATED 
NCC 

BOUND 
BLOCK 

VALIDATION 
DATA 

STRUCTURES 

NCC 
BOUND 
BLOCK 

VALIDATED 
MSS 

BOUND 
BLOCK 

DISK INTERNAL 
TIMER 

Figure 2. RAP DTLS Context Diagram 

All of the Data Flow Diagrams in the DTLS were mapped directly from the TLS and certain 
portions of the SLS. Simplified examples of the Data Flow Diagrams in the DTLS are given in 
Figures 2 and 3. 

The context diagram is given in Figure 2. The single process bubble represents the RAP and 
the five terminators are represented by labeled rectangles. These five terminators are mapped 
directly from the five ports defined in the TLS: NCC (Network Control Center), MSS (Message 
Switching System), UIS (User Interface System or Operations Console), DISK (Validation Data 
Structures), and INTERNAL (Interval Timer). The various data flows and control flows 
represent: the various message blocks passing through the RAP; the downloading of the 
Validation Data Structures; the commands from the operations console; the system responses to 
those commands; and the timeout signals from the internal port. 

732 



NCC 
'BOUND 

BLOCK 

VALIDATED 
NCC 

BOUND 
"   BLOCK 

NCC 
-PROCESSOR 

STATUS 

VALIDATION 
DATA 

STRUCTURES 

I 

NCC 
COMMAND 

NCC 
PROCESSOR 
RESPONSE 

* VALIDATION 
DATA 

STRUCTURES 

CONSOLE 
COMMAND * 

SYSTEM 
RESPONSE 

VAUDATED 
MSS 

BOUND 
BLOCK 

SYSTEM 
STATUS 

STATUS 
TABLE 

RESET 
STATUS 

VALIDATION 
DATA 

STRUCTURES 

MSS 
BOUND 
BLOCK 

SS 
PROCESSOR 
RESPONSE 

MSS 
-PROCESSOR 

STATUS 

Figure 3. RAP DTLS Level 0 Data How Diagram: RESTRICTED ACCESS PROCESSOR 

The level 0 Data Flow Diagram is given in Figure 3. This highly simplified diagram describes 
the operation of the RAP system. Message blocks passing through the RAP are validated by one 
of the two validation processors. Only those found to be valid are passed on. Those found to be 
invalid are not. Invalid message blocks are also logged, but for purposes of simplification, this 
operation is not being shown in these illustrative diagrams. The Validation Data Structures 
describe the valid formats for the various types of message blocks passing through the RAP. The 
operational status of the processors is kept in the Status Table and updated at periodic intervals. If 
any of the processors does not update the Status Table before the timeout signal for that interval, 
the whole RAP system is shut down. This is in keeping with the Air Force Security Policy which 
states that the RAP may not process messages in degraded mode.  Each of the three process 

733 



DORMANT 
STATE 

I: LOAD COMMAND 
O: <E> LOAD VALIDATION DATA STRUCTURES 

1 
DATABASE 

ACCEPTANCE 
STATE 

I: LOAD SUCCESSFUL 
O: <E> ACTIVATE NCC VALIDATION PROCESSOR 

NCC 
ACTIVATION 

STATE 

I: NCC ACTIVATED 
O: <E> ACTIVATE MSS VALIDATION PROCESSOR 

MSS 
ACTIVATION 

STATE 

I: MSS ACTIVATED 
O: <E> SEND SYSTEM RESPONSE 
O: <E> CHECK SYSTEM STATUS 
O: <E> RESET STATUS TABLE 

ACTIVE 
STATE 

I: TIME FOR STATUS 
L-JD: <E> CHECK SYSTEM STATUS—I 

O: <E> RESET STATUS TABLE 

I: LOAD UNSUCCESSFUL 
O: <E> SHUTDOWN SYSTEM ' 

I: TIME OUT 
O: <E> SHUTDOWN SYSTEM" 

I: TIME OUT 
O: <E> SHUTDOWN SYSTEM" 

I: BAD SYSTEM STATUS 
O: <E> SHUTDOWN SYSTEM" 

l:SHUTDOWN COMMAND 
O: <E> SHUTDOWN SYSTEM" 

Figure4. RAP DTLS State Transition Diagram: RAP EXECUTIVE 

bubbles represents one of the major functional processor groups. The solid lines represent data 
flows between the processor groups while the dotted lines represent flows of control. The parallel 
horizontal lines represent the Status Table. 

734 



Figure 4 gives an example of an STD. This highly simplified diagram is mapped from the 
operational functions (OFUNS) which define the processing of the Operations Console commands 
for downloading the Validation Data Structures and for otherwise controlling the block validation 
processors of the RAP system. As the diagram shows, if any of these operations fail or do not 
take place before the timeout signal, the system is shut down. The system is also shut down if any 
processor's status report does not arrive before the timeout signal for that status reporting period. 

The derivation of the STDs follows naturally from the state machine nature of the Formal 
Security Model. Each of the operational functions in the model (the OFUNS) defines a state 
transition. The assertions in the operational functions define those conditions which must be true 
and those events which must occur in order for the state machine to move from one given state to 
another. The effects in the operational functions define the state that the machine will transition to 
as well as the actions taken by the machine. These actions include outputs across the security 
perimeter, the assigning of values to various global data structures (VFUNS), and the initiation of 
data flows between the various processors making up the RAP. 

Each large box in the STD represents a state. The arrows, called "transition arcs," show the 
transitions from state to state. Each transition arc is labeled by the events which trigger the 
transition and the accompanying actions taken by the RAP. The events which trigger the transition 
are displayed as input items (prefaced by "I:" on the figure). The actions taken by the RAP, 
concurrently with the change in state, are displayed as output items (prefaced by "O:" on the 
figure). Often an output item activates (or enables) a process on a Data Flow Diagram, as is 
indicated on the figure by "<E>" followed by the process name. 

DEVELOPMENT OF THE CONVINCING ARGUMENT 

The Convincing Argument is an intuitive demonstration that the DTLS follows from the 
concrete part of the Formal Security Model (i.e., the TLS). In essence, it is a table of 
correspondences between the elements of the concrete part of the model and the elements of the 
DTLS. It seeks to make explicit the mapping from the one-dimensional PASCAL-like notation of 
the SYSPECIAL specification language to the two-dimensional pictographic notation of the 
Yourdon-DeMarco diagrams. For example, in relating the STD of Figure 4 to the OFUNs from 
which it is derived, the Convincing Argument presents explicitly the correspondences between the 
assertions and effects of those OFUNs and the transition arcs of Figure 4. Similarly, the states of 
Figure 4 and data stores such as STATUS TABLE in Figure 3 are related back to their antecedent 
VFUNs. Basically, the Convincing Argument is a proof by inspection. It directs the reader to 
each OFUN, VFUN, and Function Definition of the Formal Model and invites the reader to decide 
for him- or herself whether the corresponding elements of the DTLS maintain the security- 
preserving state transitions of the model. 

NOTE: The SLS was consulted during the development of the DTLS in order to get a good 
first cut at the nature of the interprocessor communications which are not specified in the TLS 
black-box specification. 

DEVELOPMENT OF THE DTLS TRACEABILITY TO THE RAP CODE 

As the DTLS was produced for the various RAP functional areas, the code was consulted to 
confirm or correct the first cut at the diagrams as obtained from the TLS and SLS. All of the Data 
Flow Diagrams were eventually defined in terms of leaves of the hierarchical tree, namely, in terms 
of structured English Minispecs, STDs, or Decision Tables. A complete traceability of the DTLS 
to the code is achieved by making correspondences between all of the DTLS leaves and all of the 
code implementing each leaf. Typically a Minispec corresponds to one contiguous segment of 
code which manipulates a set of inputs to produce a set of outputs, whereas separate decision paths 
on an STD correspond to separate sections of code. Decision Tables can be similar to Minispecs if 

735 



they merely produce a set of output variables based upon the values received for various input 
variables. On the other hand, a Decision Table becomes a control process (similar to an STD) if it 
uses the input variables to decide which processes to activate next. A Decision Table can 
simultaneously produce output variables and enable the execution of other processes. All of the 
threads of execution in the code should have corresponding sequences of actions in the DTLS in 
order for the traceability to demonstrate that the code conforms to its verification specifications. 

CONCLUSIONS AND POSSIBLE FUTURE DIRECTIONS 

This project demonstrates that a system specification written in a formal specification language 
may be functionally duplicated with a CASE tool using the Ward-Mellor [20] variation of the 
Yourdon-DeMarco notation. The TurboCASE (see NOTE at bottom of page) tool with real-time 
extensions is a natural for translating the TLS finite state machine representation into a Ward- 
Mellor structured representation. The entities of the Formal Security Model map easily and 
naturally into the entities of the DTLS. The Formal Security Model is rigorous and mathematically 
exact. The DTLS is also rigorous and exact in its own right, but is written in an intuitive notation 
that is easily learned and by now familiar to most software engineers. 

The TurboCASE (see NOTE at bottom of page) tool automatically performs checks for 
consistency and balance. Previously, most tasks, such as establishing the correspondences 
between the TLS/SLS/3LS levels of detail, had been done manually by the security analyst. 

If it is desirable to eventually phase out all use of the S YSPECIAL specification language in the 
RAP verification documentation, several options exist. If the Bl security level is considered to 
provide sufficient assurance for a trusted guard such as the RAP, then the DTLS is a strong 
candidate for the Bl informal model. On the other hand, if the assurance level needs to be 
maintained at the B2 or B3 security level, then a proof mechanism is necessary that does not rely 
upon the SYSPECIAL language. The abstract and concrete parts of the Formal Security Model are 
both written in SYSPECIAL and the concrete part (the TLS) has been successfully translated into 
the Yourdon-DeMarco notation. The abstract part may be similarly translated using the CASE tool. 
An ASCII coded data interchange file provided by the CASE tool makes all of this specification 
information accessible to any computer program. This makes feasible an automated theorem 
prover for the DTLS. 

REFERENCES 

[1] Belton, M., 1990, Iconix and TurboCASE CASE Tool Evaluation Report for the Restricted 
Access Processor (RAP), CSC Contract NAS-5-31500, NASA, Goddard Space Flight 
Center, Greenbelt, Maryland,    (see NOTE at bottom of page) 

[2] Booz-Allen & Hamilton Inc., 1989, RAP Transition Plan, NAS-5-30169, NASA, Goddard 
Space Flight Center, Greenbelt, Maryland. 

[3]  , 1990, RAP Overview Document, NAS-5-30169, NASA, Goddard Space 
Flight Center, Greenbelt, Maryland. 

[4] Computer Sciences Corporation, 1983, Restricted Access Processor (RAP) Computer 
Program Development Specification (B5): Block Validation Program (BVP), CDRL 110-1, 
NASA, Goddard Space Flight Center, Greenbelt, Maryland, section 3.2. 

NOTE: TurboCASE is a registered trademark of StructSoft, Inc.; 
PowerTools is a registered trademark of Iconix Software Engineering, Inc. 

736 



[5]  , 1983, Restricted Access Processor (RAP) Computer Program Development 
Specification (B5):  Gateway Program (GWP), CDRL 110-2, NASA, Goddard Space Flight 
Center, Greenbelt, Maryland, section 3.2. 

[6] Computer Security Center, 1985, Department of Defense Trusted Computer System 
Evaluation Criteria, DOD 5200.28-STD, DOD, Computer Security Center, Fort George G 
Meade, Maryland. 

[7]  , 1985, Technical Rationale Behind CSC-STD-003-85: Computer Security 
Requirements. Guidance for Applying the Department of Defense Trusted Computer System 
Evaluation Criteria, CSC-STD-004-85, Computer Security Center, Fort George G Meade, 
Maryland. 

[8] DiVito, B., 1985, Restricted Access Processor (RAP) Formal Security Model, CDRL 140-7, 
NASA, Goddard Space Flight Center, Greenbelt, Maryland. 

[9] Gray, J. H., 1989, Iconix PowerTools Evaluation Report for the Restricted Access 
Processor (RAP), CSC Contract NAS-5-31500, NASA, Goddard Space Flight Center, 
Greenbelt, Maryland,    (see NOTE at bottom of previous page) 

[10] Halpern, J. D., S. Owre, N. Proctor, and W. F. Wilson, February 1987, "Muse - A 
Computer Assisted Verification System," IEEE Transactions on Software Engineering, Vol. 
SE-13, No. 2, pp.151-156. 

[11] Hatley, D. and I. Pirbhai, 1987, Strategies for Real-Time System Specification, New York, 
Dorset House Publishing Co. 

[12] Lazar, R., 1989, Restricted Access Processor: Annotated Augmented Top Level 
Specification, MITRE contract, NASA, Goddard Space Flight Center, Greenbelt, Maryland. 

[13] Lazar, R., 1990, The RAP Proof: Exposition and Critique of a Formal Verification 
Methodology, Report No. MTR 90W00021, MITRE Corporation, McLean, Virginia. 

[14] Lazar, R., 1991, The New RAP Methodology, Report No. WP 91W00182, MITRE 
Corporation, McLean, Virginia. 

[15] Owre, S., and J. D. Halpern, 22 July 1985, MUSE: The Sytek Proof Processing System, 
Report No. TR-85007, SYTEK Inc., Mountain View, CA. 

[16] Proctor, N., 26 July 1985, Restricted Access Processor (RAP) Top-Level Specification, 
CDRL 110-5, NASA, Goddard Space Flight Center, Greenbelt, Maryland. 

[17]  , 26 July 1985, Restricted Access Processor (RAP) Verification Results 
Report, CDRL 141-3, NASA, Goddard Space Flight Center, Greenbelt, Maryland. 

[18] Silverberg, B.A., L. Robinson, and K. N. Levitt, June 1979, The HDM Handbook - 
Volume II:  The Languages and Tools of HDM, SRI Project 4828, SRI International, Menlo 
Park, CA. 

[19] Tavilla, D. A., 22 June 1986, A Guide to Understanding the Orange Book Security Model 
Requirements, Report No. WP 26782, MITRE Corporation, Bedford, Mass. 

[20] Ward, P. and S. Mellor, 1985, Structured Development for Real-Time Systems, Volumes I, 
II, and III, New York, Yourdon Press. 

737 



Tutorial Series On Trusted Systems 

R. Kenneth Bauer 
Joel Sachs 

Dr. Gary Smith 
Dr.  William  Wilson 

Area Systems, Inc. 
2841 Junction Ave., Suite 201 

San Jose, CA 95134 
408^134-6633 

Presented by: 
Dr. Charles Abzug 

LtCdr Alan Liddle, Royal Navy 
Howard Looney 

Information Resources Management College 
National Defense University 

Fort Lesley J. McNair 
Washington, D.C. 20319 

202-287-9321 

Schedule 

0900 -1030 

1100 -1230 

1400 -1530 

1600 -1730 

Description 

Tuesday -13 Oct 1992 
(Conference Plenary) 

(Conference Plenary) 

Threats & Security 
Overview 
LtCdr Alan Liddle 
Physical, Personnel, & 
Administrative Security 
Howard Looney 

Wednesday -14 Oct 1992 
Trust Fundamentals 
Dr. Charles Abzug 
Trusted Networks 
R. Kenneth Bauer 
Trusted Databases 
Dr. Gary Smith 

Trusted Integration & 
System Certification 
Joel Sachs 

Thursday -15 Oct 1992 
Trust Fundamentals 
Dr. Charles Abzug 
Trusted Networks 
Joel Sachs 
Trusted Databases 
Dr. Gary Smith 

Trusted Integration & 
System Certification 
Dr.  William  Wilson 

These tutorials are based on courses and seminars given by either Area Systems or the Information 
Resources Management College of the National Defense University. Area's Information Security 
Seminars focus on several topics, including Computer, Network, and Database Security and incorporate 
experience from applying Area's security consulting and engineering services on MLS systems solution 
developments. The Information Resources Management College includes security in its information 
management courses, particularly through an intensive Automated Information Systems Security Course 
which is taught in the graduate level. 

The tutorials will be presented in lecture format with question and answer periods. While there is a 
logical flow between the tutorials, each tutorial will be presented as a separate unit so that conference 
attendees can attend any or all of them. The tutorials are intended to introduce many and varied 
security topics as opposed to exploring them in-depth. Brief descriptions of each tutorial identified 
above follows: 

Threats & Security Overview focuses on the general threats to automated information systems, assets 
requiring protection, and an overview of security disciplines (operational, communications, computer, 
physical, and administrative) as well as their interrelation. 

Physical, Personnel, & Administrative Security focuses on the concept of "layering" security through 
physical, personnel, and administrative security measures. Topics include: criteria for facility 
selection, design, and access controls, as well as environmental, fire protection, and power 
considerations. 

738 



Trusted Networks focuses on basic points in network security and gives an overview of the TNI. Topics 
include network security concerns and services, the NT and its Evaluation Classes, system composition 
and interconnection, cascading, and an overview of the NT evaluation process. 

Trusted Database Systems focuses on security from a "database view" and gives an overview of the 
TDI. Topics include DBMS specific security requirements, vulnerabilities, and challenges; database 
design considerations; implementation issues; and use issues. 

Trusted Integration & System Certification focuses on issues in integrating MLS solutions using trusted 
products, the development of the certification evidence, and the accreditation process. Topics include 
system-wide security and assurance, security trade-offs, and development methodologies. 

739 



Executive Summary 

Addressing U. S. Government Security Requirements for OSI 
PANEL SESSION OVERVIEW 

Noel A. Nazario, Chair 
Protocol Security Group 

National Institute of Standards and Technology 

Are U. S. Government requirements for protecting unclassified network 
data being met by emerging voluntary international standard protocols? 
This session focuses on security requirements that need to be 
addressed within the U. S. Government Open Systems Interconnection 
Profile (FIPS Pub 146-1) and current efforts to meet them. The session 
examines Government requirements, discusses emerging security 
protocols, and describes a labeling infrastructure necessary to 
support security services and protocols. 

Federal agencies are experiencing a growing need to safeguard information exchanges on 
computer networks. While their security needs grow, communications systems currendy 
available to agencies do not provide the necessary protection. Recently, federal agencies were 
mandated to transition their computer communications systems to the Open Systems 
Interconnection (OSI) architecture (IS 7498). OSI is a non-proprietary communications 
architecture developed by the International Standards Organization (ISO). At the present time, 
OSI does not provide adequate security features either. The National Institute of Standards 
and Technology is working to stimulate the development of OSI-based products that meet 
Government requirements, including security. NIST has produced a Federal Information 
Processing Standard (FIPS) 146-1 known as the Government Open System Interconnection 
Profile (GOSIP). GOSIP is a mandatory procurement specification for Government 
communications systems based on the OSI architecture. FIPS 146-1, GOSIP version 2, 
contains a single security option for the Connectionless Network Protocol (CLNP) and an 
appendix discussing standardization efforts in the area of security. GOSIP version 3, intended 
for the FY93 time frame, contains an updated security appendix, and references to a common 
profile called Industry and Government Open Systems Specification (IGOSS). This common 
profile is being developed jointly by NIST, the Manufacturing Automation Protocol (MAP) 
and the Technical and Office Protocol (TOP) communities, and the Electric Power Research 
Institute (EPRI). Its purpose is to unify the procurement and operational requirements of 
major U. S. users of OSI products. The IGOSS incorporates security features for the 1988 
X.400 Message Handling System and X.500 Directory Services. Still, the X.400 and X.500 
security features in the IGOSS fall short of meeting agency security requirements. 

GOSIP is based on international standards and agreements reached by vendors of 
communications equipment participating in the Open Systems Environments (OSE) 
Implementors Workshop (OIW). The GOSIP outlines a subset of OSI services and features, 
required by the Government, that vendors have agreed to implement. The functionality 
outlined in GOSIP must reflect all agency requirements but, so far, security requirements have 
not been fully addressed. 

740 



In July 1988, the International Standards Organization (ISO) approved the OSI Security 
Architecture (IS 7498/2). It provides a framework for the incorporation of security to OSI 
protocols. Five primary security services, authentication, access control, data confidentiality, 
data integrity, and non-repudiation, are specified in the architecture. IS 7498/2 also discusses 
mechanisms that may be used to provide these services and the OSI layers where they could 
be offered. While the Security Architecture lays the ground work, significant effort is required 
to standardize protocol specifications that contain security features. 

The five primary security services defined in IS 7498/2 provide safeguards against 
unauthorized access to systems and data, and against unauthorized disclosure, modification or 
destruction of data, which may occur accidentally or intentionally. The security services are 
described bellow. 

• Data confidentiality services protect against unauthorized disclosure. Protection of 
medical records to insure patient's privacy is an example of the need for confidentiality. 

• Data integrity services protect against unauthorized modification, insertion and deletion. 
Electronic funds transfer between banks requires protection against modification of the 
information. 

• Authentication services verify the identity of communicating peer entities and the source 
of data. Owners of bank accounts require assurance that money will be withdrawn only 
by them. 

• Access control services allow only authorized communications and access to system 
resources.   Only financial officers are authorized access to a company's financial plans. 

• Non-repudiation, with proof of origin, provides to the recipient, proof of the origin of 
data and protects against any attempt by the originator to deny sending the data. 
Non-repudiation, with proof of delivery, provides to the sender proof of the delivery of 
data. The non-repudiation service may be used to prove to a judge that a person received 
or sent a message (e.g., a purchase order). 

Government agencies may require the implementation of all or some of these services in their 
communications systems. The Security Architecture indicates that authentication, 
confidentiality, integrity, and access control services may be implemented in layers three, four 
and seven of the OSI architecture. The non-repudiation service may only be offered at layer 
seven. The selection and placement of mechanisms to support security services is based on 
the perceived threats and a balance between protection and cost. 

NIST is responsible, under the 1987 Computer Security Act, for developing standards for the 
protection of unclassified but sensitive information in Federal computer systems. In meeting 
that responsibility NIST coordinates efforts with other Government agencies and supports the 
national and international standards process. Based on perceived Government needs, NIST has 
identified areas where security enhancements to GOSIP are required. Figure 1 depicts planned 
security enhancements. 

741 



Initial Enhancements Future Enhancements 

Protocols 

Layer 7 • Private Key-Based 
Key Management 
Protocol (KMP) 

• Public Key-Based KMP 
• Trusted Network 
Management 

• Secure Message 
Handling System 

• Secure Directory 
Services 

Layer 4 • Transport Layer 
Security Protocol 
(TLSP/SP4) 

Layer 3 • Network Layer Security 
Protocol 
(NLSP/SP3) 

Supporting Security 
Infrastructure 

• Security Labels 
• Computer Security 
Objects Register 

• Certificate 
Administration 

Figure 1 -   GOSIP Security Enhancements 

These enhancements include both the establishment of a security infrastructure and the 
incorporation of security protocols. For instance, the initial enhancement include the adoption 
of a standard security labeling scheme and the establishment of a Computer Security Objects 
Register (CSOR). The standard labels provide for a uniform way of conveying security-related 
information about individual data units. The CSOR allows the registration of specific semantic 
definitions for generic protocol elements and the assignment of unique identifiers used to 
establish security parameters for communication. These initial security enhancements include 
a private key-based (symmetric) key management protocol based on ANSI X9.17 at the 
Application Layer and a security protocol for the Transport Layer. 

Future enhancements will include the establishment of mechanisms for the administration of 
certificates for use with public key-based (asymmetric) cryptography. Certificates are unforgeable 
pieces of information that identify communicating entities. Certificates can be used to support 
access control, authentication, and non-repudiation services. Also planned is the incorporation 
of a security protocol for the Network Layer. Enhancements to the Application Layer include, 
secure messaging services, secure directory services, trusted network management, and a public 
key-based key management protocol. 

Before security enhancements can be made to GOSIP, standards on which to base implementation 
agreements need to exist. OSI security standards being currently developed by ISO will be the 
basis implementors agreements by the OSE Implementors Workshop (OIW). Several sub- 
committees (SC21, SC27, and SC6) of the ISO/IEC Joint Technical Committee One (JTC1) is 
responsible for OSI standards on computer security-related matters. An overview of these bodies 
and the status of their activities will be presented by Mr. Ted Humphreys from XISEC 

742 



Consultants, Ltd. in the United Kingdom. Mr. Humphreys is an active participant in the 
international standards process. 

The OSE Implementors Workshop convenes four times a year at NIST and produces agreements 
for the implementation of commercially available OSI products. Mr. Dale Walters, from the 
Systems and Network Architecture Division at NIST, will present the status of security-related 
work by various Special Interest Groups (SIGs) within the OIW. Mr. Walters participates 
actively in the Security and the Lower Layers Special Interest Groups. 

NIST coordinates its security efforts with other government agencies and military organizations 
with their own security requirements and expertise. An instance of this cooperation is the 
development of a uniform security labeling strategy for GOSIP. Security experts from various 
Government and private organizations participated in this effort. Representatives from various 
organizations attended two workshops on security labels held by NIST and provided technical 
comments on the documents generated. These workshops helped NIST develop a security label 
specification defined in a proposed Federal Information Processing Standard (FIPS) called 
"Standard Security Label for the Government Open Systems Interconnection Profile." Professor 
Thomas Bartee, from the Institute for Defense Analysis, an original contributor to this work, 
who served as liaison between NIST and other government organizations with special security 
requirements discusses current issues in security labeling. 

Another example of inter-agency cooperation is the establishment of registration procedures for 
computer security objects. This effort also originated from the discussions at the NIST security 
labeling workshops. From those discussions it became apparent that a separation between policy 
and implementation issues was necessary for the success of a generic security labeling strategy. 
The use of a Computer Security Objects Register (CSOR) provides for the specification of 
policy-driven handling and interpretation rules independently form the label specification. NIST 
is currently establishing such a register and coordinating registration procedures with the Defense 
Information Systems Agency (DISA). 

The CSOR will not be limited to the registration of security labeling semantics. By assigning 
unique names to other types of security objects, it will assist in the negotiation of parameters 
for secure communications. All the emerging security protocols require that the communicating 
parties share prior knowledge of security services and mechanisms protecting the communication. 
Cryptographic keys for the provision of confidentiality services via symmetric key algorithms are 
examples of information that need to be shared prior to a secure data exchange. 

As OSI security standards become available, future versions of GOSIP will incorporate emerging 
commercial offerings that meet Government requirements. NIST is placing special attention on 
security infrastructure issues such as security labeling, security object registration and the 
availability of appropriate key management systems for loading security parameters. These 
elements are central to the availability of all other security protocols and services. 

743 



Executive Summary 

OSE Implementor's Agreements 

Dale Walters 
National Institute of Standards and Technology 

July 27, 1992 

This executive summary reflects on what security agreements have been reached in the OSE 
Implementors Workshop (OIW) as well as what still needs to be done in the next few years. 

OIW 

The OSE Implementor's workshop is tasked with taking base standards and producing working 
agreements that vendors will agree to build and users will procure. Security implementation 
agreements are finally in the process of being developed. This talk will give a brief overview 
of what Special Interest Groups (SIGs) are doing in the way of developing these working 
agreements. The areas that will be covered are lower layers (Transport and Network), 
Directory, and the overall architecture developed by the Security SIG. 

Lower Layer 

Initial working agreements have been started on both the Network and Transport Layer 
Security protocol. These initial agreements will form the basis for future GOSIP functional 
requirements. 

Some of the agreements are as   follows: 

A) Ordering of security functions 

B) Size of fields 

C) Access control and integrity 

Lower Layers has been tasked to develop encapsulation formats for use by both of the above 
mentioned standards. The profile, based on specific algorithms for integrity and confidentiality 
will indicate what the protocol data unit will look like and what will need to be encapsulated 
before sending the data from one system to another. 

An important part of both the NLSP and TLSP standards is the Security Association - Protocol 
SA-P. An association between two entities must first be formed before secure 
communications can be started. This can be done at the application level, by manual exchange 
of information and also by the specific transport or network entity. The last example is well 
on the way to becoming an international standard and will be adopted by the OIW. I would 
like to spend some time on this functionality. 

744 



A) Establishment, modification, and close of an Association. 

B) What parameters can be exchanged and when 

C) What mechanisms are used for authentication 

D) Other options 

Directory Security Services 

Directory SIG has reached agreements on access control and authentication as it applies to 
this standard.   A summary of what has been agreed to is as follows: 

A) Peer Entity Authentication via passwords or digital signatures 

B) Integrity 

C) Access control via lists 

D) Relationship between authentication and access control 

Security SIG 

The Security SIG is a forum for security architecture, modeling, profiling, and algorithm 
registration issues. One area that this group will tackle is that in a full OSI compliant system, 
containing a multitude of OSI applications over the seven layer model, security could be 
almost everywhere. The SECSIG will need to profile different scenarios so that there is not 
a lot of duplication of security functionality. This SIG will get extremely busy as more base 
standards are agree to internationally. The other regional Security SIGs will also be part of 
this security harmonization process so that the user does not pay a steeper efficiency penalty 
then necessary for their secure communication needs. 

745 



Executive Summary 

Emerging OSI Security Protocols & Techniques 

Ted Humphreys 
XISEC Consultants Ltd., England 

12th July 1992 

This short note reflects on the position of current international standards being developed by 
ISO/IEC JTC1, in the area of OSI security protocols and techniques. 

SECURITY PROTOCOLS 

The two sub-committees responsible for the standardisation of OSI protocols and their security 
extensions are ISO/IEC/JTC1/SC21 (OSI Architecture, Upper Layers and Management) and 
SC6 (OSI Lower Layers). In addition, ISO/IEC/JTC1/SC18 is dealing with X.400 MHS 
security in collaboration with CCl'lT. 

The current scope and status of the work in these areas includes: 

Physical layer security enhancements have reached international standards status as ISO 9160. 
This defines the interoperability requirements for line encipherment devices, called Data 
Encipherment Equipment. It specifies, for each of the V.24, X.20bis, X.21bis, X.20 and X.21 
physical interfaces: 

• the means of exchanging session keys & initialisation variables; 

• the point at which encipherment commences; 

• the actions taken when error occurs. 

Network layer security enhancements are defined in the ISO 11577 Network Layer Security 
Protocol (NLSP) standard. The NLSP specifies optional additional protocol permitting the use 
of cryptographic techniques to provide data protection for network layer connections and for 
connectionless network later transmissions. The NLSP provides security features in the 
Network Service as described in ISO 8348 and ISO 8348/ADI and augmented by ISO 7498/2. 

The NLSP is applicable in a wide range of threat environments and may be implemented to 
a range of assurance levels. It can be used as a self-contained protocol within the network 
layer, it can be closely coupled with a SNAcP (Subnetwork Access Protocol as defined in ISO 
8208) and it can be provided in such a way that operation of the protocol incurs the minimum 
of possible overhead. In addition the NLSP can be implemented in either an end system or 
an intermediate system. 

The NLSP protocol has two basic modes of operation (i) NLSP-CL which provides at its 
upper boundary a secure connectionless network service and (ii) NLSP-CO which provides at 
its upper boundary a secure connection oriented network service. 

746 



Both modes can be implemented in end systems and in intermediate systems. These modes 
allow for the source and destination NLSP address to be optionally protected from disclosure. 
Both modes can be operated anywhere within the network layer such that the upper and lower 
layer services use the defined primitives. 

The NLSP provides the same mode of service (CL or CO) at its upper and lower boundaries. 

The NLSP security features are based on the use of cryptographic mechanisms and provide 
the following facilities: 

connection (NLSP-CO) & connectionless (NLSP-CL) confidentiality 

connection mode integrity without recovery (NLSP-CO) 

connectionless integrity (NLSP-CL) 

access control (NLSP-CO & NLSP-CL) 

data origin (NLSP-CL) & peer entity authentication 
(NLSP-CO) 

traffic flow confidentiality (NLSP-CO & NLSP-CL) 

The NLSP makes use of the concept of a Security Association (SA) which may exist outside 
of a specific connectionless UN1TDATA or connection. SAs are established between 
communicating parties and are used to protect an instance of communication (connectionless 
SDU or a connection). The information forming an SA are those keys and other security 
attributes needed to control the operation of security. 

The NLSP is currently at the Committee Draft (CD) stage of development. 

Transport layer security enhancements are defined in ISO 10736 the Transport Layer Security 
Protocol (TLSP) standard. The TLSP specifies procedures that operate as optional extensions 
to those defined in ISO/IEC 8073 (Connection Oriented Transport Layer Protocol specification) 
and ISO 8602 (Protocol Specification for providing connectionless mode transport service). 
This does not preclude unprotected communications between transport entities implementing 
8073 and 8602. 

TLSP is applicable in a wide range of threat environments and may be implemented to a 
range of assurance levels. It can support all the integrity, confidentiality, authentication and 
access control services identified in ISO 7498-2 as relevant to the transport layer. 

The TLSP supports these services through the use of cryptographic mechanisms, security 
labeling and attributes, such as keys and authenticated identities, pre-established by security 
management. 

747 



TLSP used with ISO/IEC 8073 can support connection integrity with and without recovery, 
connection confidentiality, access control service and peer authentication with each connection 
individually protected. 

TLSP used with ISO 8602 can support connectionless integrity, connectionless confidentiality, 
access control service and data origin authentication. 

The TLSP specification describes the protocol extensions for providing confidentiality and 
integrity data protection, in particular it defines: 

• the procedures for incorporating cryptographic techniques in protocol processing, 

• the minimum characteristics of cryptographic algorithms with which these 
procedures can be used, 

• the structure and encoding of data units necessary to achieve interoperability. 

The two modes of operation specified in the TLSP standard are shown in the following figure: 

Session Layer CLTS COTS 

ISO 8602 
(Protocol) 

ISO/IEC 8073 
(Protocol) 

Transport 
TLSP TLSP 

Layer 
ISO 8602 

Concatenation 
multiplexing 
& assignment 
to network 
connection 

ISO/IEC 8073 
Concatenat ion 
multiplexing 
& assignment 
to network 
connection 

CONS or CLNS CONS or CLNS 

Network Layer 

The TLSP is currently at the Draft International Standard (DIS) stage of development. 

Message Handling Systems security features have been incorporated in the CCiTT X.400 ISO 
10021 standard. These features provide a secure message transfer capability within a message 
handling environment   The following are some of the facilities defined: 

• Authentication (message origin, peer entity, etc.) 

• Integrity (message content, message sequence, connection) 

• Non-Repudiation (of message delivery, origin, submission) 

• Confidentiality (message content, message flow, connection) 

748 



The X.400 MHS services and protocols is designed to support a number distributed messaging 
applications e.g. E-Mail and EDI. 

This work has now been extended to cover EDI messaging security as specified in the CCITT 
X.435 standard.   An ISO equivalent of X.435 is currently under development. 

Further security enhancements to X.400, e.g. in the area of Interpersonal Messaging, are 
expected to be developed over the next few years. 

Directory System security has been incorporated in the CCITT X.500 ISO 9594 standard. 
Security is provided in the form of Authentication and Access Control capability to support 
Director Services. The Access Control capability presently specified is limited in features and 
in scope, but work is currently under way to extend and strengthen this capability. 

Other OSI Upper Layer security work includes (i) FT AM security which is slowly starting 
to be developed, (ii) TP security is planned for development, (iii) ODA security is under 
development and will be available shortly, and (iv) Remote Database Access (RDA) as defined 
in ISO 9579 is now available. 

SECURITY TECHNIQUES AND MECHANISMS 

The OSI Security Architecture, ISO 7498-2, identifies a number of security mechanisms and 
techniques that could be used to implement the security enhancements of OSI services and 
protocols.   In particular those lower layer and upper layer security protocols described above. 

Specific mechanisms include: 

Encipherment Techniques - these can be used on their own to provide data 
confidentiality services or in combination with other techniques to provide 
services such as peer entity and data origin authentication, and various integrity 
services. 

Digital Signature Mechanisms - these mechanisms are concerned with data 
appended to, or a transformation of, a data unit that allows a recipient of the 
data unit to prove the source and integrity of the data unit and to ensure against 
forgery. These mechanisms can be used as part of a non-repudiation service 
with proof of origin or proof of delivery, and can complement a number of 
other security mechanisms. 

Access Control Mechanisms - these are used to determine and enforce the access 
rights of an entity attempting access to an OSI resource. These may be based 
on the use of passwords, access control lists or some non-forgeable capability. 

Data Integrity Mechanisms - are normally based on the use of cryptographic and 

749 



non-cryptographic check functions and values. These techniques can be used 
to provide services such as connection integrity, selective field integrity and 
connectionless integrity. 

• Authentication Exchange Mechanisms - these may employ the use of 
cryptographic and non-cryptographic techniques, characteristics and/or possessions 
of entities and resources and hand-shaking protocols. These techniques can be 
used to provide services such as peer entity authentication. 

• Notarisation Mechanisms - these provide assurance of certain properties (e.g. 
integrity, origin, time and destination) associated with the data being 
communicated between entities. These techniques can be used to provide 
services such as non-repudiation of origin or delivery. 

The sub-committee generally responsible for the standardisation of Security Techniques is 
ISO/IEC/JTC1/SC27. The scope of SC27 covers the development of standards for security 
techniques such as digital signatures, authentication exchange mechanisms, data integrity and 
non-repudiation techniques. 

In addition, SC27 is also responsible for dealing with key management techniques, non- 
cryptographic techniques, management guidelines, security services in general (e.g. trusted third 
party services for EDI) and security evaluation criteria. 

Although there are a number of examples of standards for security techniques e.g. ISO/IEC 
9796 "Digital Signature Mechanism with Recovery", ISO/IEC 9798 "Entity Authentication 
Mechanisms" and ISO 9797 "Data Integrity Mechanism", there are still a number of 
mechanism standards yet to be produced. SC27 will, as part of their current scope, be 
instrumental in such developments. 

On the specific issue of algorithms used in the implementation of such mechanisms, there is 
available an "International Register of Cryptographic Algorithms". The standard ISO/IEC 9979 
"Procedures for the Registration of Cryptographic Algorithms" defines the content and format 
for register entries along with the rules of submission and other administrative details for 
algorithms to be registered. The International Registration Authority responsible for this 
register is NCC (National Computer Centre) in the U.K.. 

USER & IMPLEMENTOR ISSUES 

The above descriptions refer in the main to the development of base standards. One of the 
major concerns of users and implementors is the number of protocol and service options that 
are defined in these standards. Thus the next important step in the development process is 
the definition of security (sub)-profiles and implementors agreements based on these base 
standards. Such profiles and agreements define subsets or combinations of base standards to 
provide specific functions. They identify the use of specific options available in base 
standards. They generally provide a reduced set of options for users, purchasers and 
developers of IT products and systems. 

750 



Work is being carried out with the various Regional Workshops (e.g. OIW in North America 
and EWOS in Europe) in the development of profiles and implementor agreements to facilitate 
the effective use of base standards in a business environment. Work in this area has resulted 
in the development of an agreed OrW/EWOS X.400 MHS Security Profile. Work has also 
started on the profiles for lower layer security and EDI messaging. 

The needs of IT users, and purchasers for security are very diverse, as are the range of threats 
and vulnerabilities of real operational systems. Hence other user/implementor issues include: 
(i) the mapping of security functionality specified in these profiles onto the right levels of 
protection and assurance to meet operational requirements (e.g. in the case of OSI lower layer 
security), (ii) the appropriate selection of mechanisms/algorithms to meet these levels of 
security to be implemented and (iii) the combination of security standards (protocols, services 
and techniques, etc.) for the development of security systems (e.g. security could be provided 
by more than one OSI layer via a combination of security mechanism - say TLSP options 
combined with 
options from X.400 to provide a basis for security messaging services). 

In summary, there are still a number of standardisation developments to be progressed, in 
particular in the area of techniques and mechanisms, before we have a complete set of 
building blocks for secure open systems. In addition, there are several user, purchaser and 
implementor issues, including those above, which focus on the implementation of security 
using these standardised building blocks. Hence the international community is still some 
years away from having fully standardised secure open systems. 

751 



Executive Summary 

SECURITY LABELS IN OSI 

T.C. Bartee 
Institute for Defense Analyses 

The security labeling of data transmitted through communications networks is 
complicated by several factors, among these are: 1) the labels must ride inside formats 
dictated by protocols, 2) at each step the labels must be capable of being moved up or down 
in a protocol stack. 

For network usage, labels must move between user hosts, between subnets, and through 
intermediary devices, each of which impose differing demands. The problem is sufficiently 
sending labels out-of-band and then "tokens" in-band and partitioning security labels and 
sending them through different layers. 

Fortunately, both standards organizations and users have been aware of the potential 
problems which can arise if protocols and labeling mechanisms are not adequate. Standards 
organizations such as N1ST have been generous with their accommodation of user viewpoints 
through workshops and committee user representations. Still, user communities must realize 
the extent and complexity of the problem and continue to work for protocols, standard labeling 
formats, and label registration which will permit adequate labeling. 

This presentation will take the following positions: 

1) The security labeling mechanisms provided in standards for protocols must be 
adequate for both present and future usage. These mechanisms must allow for the many 
strategies for passing security information which may arise. 

2) Security labels must be carefully worked out in user communities. The labeling 
design must be adequate and allow for growth. Those familiar with the data element naming 
problem will recognize the problems inherent in communicating using labels which have not 
been coordinated between user communities. Once computers and systems are full of labels, 
it would be very difficult and expensive to make changes. Translation is sometimes difficult 
and sometimes nearly impossible. 

3) The DoD has emphasized classification levels as a guide to the "level" of 
information and to the degree of protection to be accorded data. While this categorization is 
an important one (it is certainly historically important), much data at the "lower" level of 
(Government) sensitive must be protected to the same extent as upper level data. A 
compromise of Law Enforcement Sensitive information, for example, can endanger the lives 
of officers and informants. 

4) Data throughout the Government is more and more being divided into categories 
and the data must be controlled so that only those entitled to data in a particular category 
receive it. The compartments in DoD systems offer examples of such categories and so do 
such Counter Narcotics categories as FBI - Protected Source, Coast Guard - Suspect Vessel, 
etc. Undesired disclosure of such information can endanger operations and personnel 
(disclosure of radar track information can, for example, reveal radar locations.) For 
commercial concerns, results of studies, customer and personnel files, product development 
data, etc. must all be protected. 

752 



5) For category information, there are several other important considerations. 
Sometimes data is originally distributed to a limited group and further dissemination is only 
permitted with permission from the originator. In order to observe this rule (called ORCON, 
third party, etc.) it is necessary to identify the originator or, if data from several sources is 
merged, the originators. This, plus other factors, can cause markings to be context dependent 
in ways that will be shown and further complicates marking. 

Status information on current labeling standards will be presented as will some 
examples of how these standards are being used and insights into what are the current 
problems. 

753 



Panel: 
Challenges Facing Certification and Accreditation 

Efforts of the Military Services 

Chair: LTC Ron Ross, USA 

Panelists: Larry Merritt, AFCSC, San Antonio, TX 
Robert Zomback, CECOM, Fort Monmouth, NJ 
John Mildner, NESSEC, Washington, DC. 

Abstract. The purpose of this panel is to inform the Department of Defense (DoD), 
Intelligence community, and civilian agencies and their contractors of initiatives to 
implement the policies of DoD Directive 5200.28 in the United States armed services. 
This panel will consist of a representative from each of the services. Discussion will 
focus on initiatives to address some of the challenges and issues in system 
certification and accreditation (C&A). 

BACKGROUND 

In recent years, there has been a shift in perspective of automated information 
system (AIS) security from viewing it as a number of independent, loosely coupled 
disciplines to a more cohesive, interdependent collection of security concerns. The 
current environment of declining resources and rapid advances in technology have 
demanded changes in evaluating the security posture of systems. These changes are 
necessary to reduce fragmentation and to ensure consistency and compatibility. In 
addition, an ever-changing threat environment requires a more efficient, integrated 
view of INFOSEC, which includes emissions, communications, computer 
(hardware/software/firmware), administrative, personnel, and pnysical security. 

DoD policy states that any AIS that processes classified, sensitive unclassified, or 
unclassified information must undergo a technical assessment and management 
approval before it is allowed to operate. The technical assessment establishes the 
extent to which the system meets a set of specified security requirements for its 
mission and operational environment. The technical assessment and management 
approval processes are called certification and accreditation, respectively. 

The Defense Information Systems Security Program (DISSP) has identified the 
insufficiency of certification and accreditation guidance for many environments, and 
its inconsistency across DoD components, as major problems with current DoD policy. 
The use of AISs within all aspects of DoD operations, the dynamic organization of 
systems, and the exchange of information among systems point to the need for 
uniform guidance when certifying and accrediting AISs. DISSP has identified the 
development of uniform accreditation criteria as one of the most important near- 
term tasks required to provide an integrated, cost-effective DoD information 
systems security program. 

Described below are organizations in the services which help to conduct technical 
assessments supporting the C&A process. Also described are the challenges and 
issues they face. 

754 



• 

ORGANIZATIONAL STRUCTURE AND RESPONSIBILITIES 

U.S. Air Force 

The Air Force consolidated itslNFOSEC resources in 1988 at the Air Force 
Cryptologic Support Center (AFCSC), Kelly Air Force Base, San Antonio, Texas. The 
organization responsible for managing the INFOSEC Program at AFCSC is the 
Communication-Computer Systems Security Directorate. The mission of this 
organization is to manage the Air Force Communication-Computer Systems (CCS) 
Security Program. The charter of this organization includes: 

• Providing program management and implementation planning to establish 
and provide an effective Air Force C-CS security program 

• Managing the security activities of Air Force, MAJCOM, and direct reporting 
unit (DRU) C-CS, to ensure uniform and effective program implementation 

• Providing security education, training, and awareness to all functional levels 
and operational activities within the Air Force and its contractors 

Developing policies, procedures, and criterion, as required, to ensure 
compliance with established Air Force and national level objectives 

• Developing security architectures in support of the overall Air Force C-CS 
systems architecture 

• Providing C-CS security research and development (R&D) in conjunction with 
Air Force Systems Command (AFSC) and other DoD agencies 

• Providing on-site technical system evaluation during system design reviews, 
systems integration, and test and evaluation 

• Providing for COMPUSEC product evaluation and assessment for security 
products sponsored by Air Force users with Air Force-wide applications in 
conjunction with the National Security Agency 

• Acting as Air Force executive agent for managing C-CS security support to 
communications and weapons system acquisition/implementation programs 

U.S. Army 

The Army consolidated its INFOSEC resources in support of tactical systems in the 
mid-1980s at the Communications and Electronics Command (CECOM), Fort 
Monmouth, New Jersey. The organization responsible for managing the INFOSEC 
Program at CECOM is the Information Security Division (ISD). The mission of this 
organization is to conduct research through development prove-out and production 
directed at the application of security technology, equipment, and concepts for 
tactical and strategic/sustaining base Army communications and automation 
systems. The charter of this organization includes: 

• Conducting research through development prove-out and production 
directed at the application of security technology, equipment, and concepts 
for tactical and strategic/sustaining base Army communications and 
automation systems 

755 



• Acting as level II project manager and providing post deployment field 
support, when directed 

• Providing systems security expertise to Army Program Executive Officers 
(PEOs), Program Managers (PMs), and other R&D centers 

• Representing the Army in joint service security working groups 

• Providing the technical support for Special Operations Forces (SOF) and drug 
law enforcement agencies. 

U.S. Navy 

The Navy is proposing to establish an organization similar to those of the Air 
Force and Army. The Space and Naval Warfare Systems Command 
(SPAWARSYSCOM), located in Washington, DC, is proposing to set up an INFOSEC 
Organization. The INFOSEC Organization will provide centralized management of 
SPAWAR INFOSEC resources for Department of the Navy (DON) customers, and will 
be the primary customer point of contact. Additionally, this proposal includes the 
formation of an INFOSEC Engineering Center (IEC) at the Naval Electronic Systems 
Security Engineering Center (NESSEC), located in Washington, D.C., to perform 
systems security engineering functions for DON systems. The charter for the Navy's 
IEC has not been approved yet, but it will have similar responsibilities to the INFOSEC 
centers located at AFCSC and CECOM. 

SECURITY CHALLENGES AND ISSUES 

This panel will not focus its discussion on the infrastructure of the INFOSEC 
organizations of the services. Rather, it will address a variety of challenges and 
issues that impact the implementation of C&A. Based on input from representatives 
throughout DoD, two areas of concern that were identified by the DoD Certification 
and Accreditation Working Group, which is sponsored by NSA, are policy and 
process. 

Policy 

A proliferation of policy at the national. DoD, service/agency, and lower levels 
makes it difficult for security personnel to keep up with changes in policy, and to be 
aware of all the applicable policies for a given system. The problem increases when 
service/agency systems are interconnected. In those cases, the policies relevant to all 
involved components may then be applicable. Due to the rapid advancement of 
technology and the streamlining of procurement efforts due to resource limitations, 
a reexamination of current policy, to include C&A policies, is necessary. The 
following are some of the most important issues regaraing current policy: 

• Policy not applicable to range of systems 
• Insufficient or nonexistent certifications and accreditations 
• Delegation of accreditation authority 
• Acceptable level of risk 
• Certification boundaries 

756 



Process 

Certification is conducted in support of the accreditation process as part of the 
risk management process.   Risk management is the total process of identifying, 
measuring, and minimizing uncertain events affecting resources. It includes risk 
analysis, cost-benefit analysis, countermeasure selection, security test and 
evaluation, countermeasure implementation, and systems review. Enclosure 3 to 
DoD Directive 5200.28 mandates a risk management program for each AIS to 
determine how much protection is required, how much exists, and the most 
economical way of providing the needed protection. The management commitment 
to a comprehensive risk management program must be defined as early as possible 
in the system life cycle. In scheduling risk management activities and designating 
resources, careful consideration should be given to C&A goals. Some topics of 
concern in refining the C&A process include: 

• Streamlining the process to save time and money 
• Implementing consistent methodologies 
• Ensuring C&A is adaptable to existing systems 
• Recertifying systems 
• Ensuring product evaluations feed C&A 

SUMMARY 

This panel does not attempt to elaborate on all of the issues that may exist, but 
identifies the ones that INFOSEC organizations have to deal with on a daily basis. 
The panel will address these issues and current initiatives that are underway to 
resolve the inconsistencies that may exist with policy and the implementation of the 
C&A process. 

Acknowledgements 

The moderator would like to thank ENS Susan L. Mitchell, USN, and Arthur R. 
Friedman, The MITRE Corporation, for organizing this panel and writing this 
position paper; and the members of the DOD Certification and Accreditation 
Working Group for their ideas and contributions in identifying the security issues 
and challenges discussed during the panel. 

757 



DOMESTIC PRIVACY: ROLL OF HONOR AND HALL OF SHAME 

Wayne Madsen1 

P.O. Box 302 
Moorestown, New Jersey 08057 

Within the past year, several organizations and people have stood out with regard to 
the issue of data privacy in the United States. Fortunately, some have distinguished 
themselves in promoting the concept and cause of privacy of personal information. 
Others, however, have done their best to impede data privacy. The Roll of Honor and 
Hall of Shame distinguishes the clear lines that are being drawn in the battle for 
privacy in the United States. 

ROLL OF HONOR 

The Public Utilities/Services Commissions/Boards of Massachusetts, Kentucky, 
Connecticut, Nevada, and five other states. These commissions have been 
instrumental in holding the telecommunications carriers responsible for offering free 
per-line blocking for caller ID services. Per-line blocking is of special importance for 
organizations such as battered spouse and child abuse hotlines in which anonymity 
is key. It also protects the privacy of individuals who call direct marketers and other 
vendors for information on products and services but want to maintain their 
anonymity until they decide to make a purchase or procure a service. 

The Computer Professionals for Social Responsibility (CPSR). The CPSR has led the 
way among public advocacy groups in the privacy battle. Undeterred by well-funded 
industry lobby groups and powerful congressional opponents of privacy legislation, 
CPSR has fought to elevate the awareness of members of Congress, industry, the 
Federal Government and individual citizens of the dangers posed by unrestricted use 
of information technology in government and industry. 

Senator Ernest Hollings, Chairman of the Senate Commerce Committee, who had the 
foresight to recognize that the FBI was trying to pull a fast one by attempting to 
attach a telecommunications eavesdropping rider to the 1992 FCC Authorization Bill 
for which his Senate Committee had oversight responsibility. 

Representative Pete Stark of California for sponsoring the Prescription Drug Records 
Privacy Protection Act of 1992. This bill protects consumers against pharmacies and 
doctors accessing their pharmacy records contained in databases without the consent 
of the patient concerned. Several pharmaceutical firms were interested in gaining 
access to patient data bases to determine, among other things, the income levels of 

1 The views expressed herein are the author's own and do not necessarily represent the opinions of 
his employer or his publishers. 

758 



patients based on their types of prescriptions. 

Representative John Conyers for sponsoring the Human Genome Privacy Act (HR 
2045). This act would prohibit disclosure of personal genetic data without the data 
subject's consent and also allow for corrections and deletion of erroneous genetic data 
by the data subject. 

Representative Bob Wise of West Virginia for once again sponsoring the Data 
Protection Act. This act would create a Federal Data Protection Board, which 
although non-regulatory in nature, would be a first step toward aligning the United 
States with international norms and standards on the protection of personal data. 

HALL OF SHAME 

The Federal Bureau of Investigation for once again showing an amazing lack of 
concern for the right of individual privacy. Its repeated attempts to have Congress 
bless its plans to engage in "turn key" electronic eavesdropping of the national digital 
telephonic network stand in the forefront of the assault on privacy. This assault took 
two forms: 1) a desire to have the technical cooperation of the telecommunications 
carriers to permit the FBI remote eavesdropping capabilities and 2) an attempt to 
regulate the use of encryption systems in the United States for which the government 
does not possess the decrypt capabilities. Also the FBI is singled out for its 
determination not to entertain any outside scrutiny over privacy controls for NCIC 
2000 and the DNA Fingerprint Laboratory. 

The Los Angeles Police Department and its former Chief, Daryl Gates for permitting 
a secret unit, the Organized Crime Investigation Division (OCID), to engage in 
eavesdropping activities of political, sports, journalistic and entertainment figures. 
OCID scanned a multitude of confidential personal data files to include the data in its 
own files. Also added to this list is current LAPD chief Willie Williams for not 
permitting disclosure of personal intelligence files to the data subjects concerned. 

The Direct Marketing Association (DMA) for its myriad activities all designed to gut 
data protection efforts in the US and abroad. These activities are all based on the 
DMA's contention that Americans are afforded enough in the way of personal data 
protection by the DMA's much touted "opt out" clause, a proviso that individuals may 
elect to have their names removed from direct mailing lists. The DMA has sought to 
sell this approach to other countries in order to either influence their proposed data 
protection legislation or amend current legislation in order to water down its more 
stringent regulations for controlling the handling of personal data by the private 
sector. 

The National Institutes of Health for its lack of concern for privacy protection for data 
accumulated as part of the Human Genome Project. Genetic data collected by NIH is 
of prime interest to the insurance companies and not enough is being done by NIH 

759 



to ensure that this data does not fall into their hands. 

The Department of Justice for failing to adequately investigate the death of journalist 
Joseph Daniel ("Danny") Casolaro in 1991. Mr. Casolaro had been investigating the 
alleged theft of PROMIS, a powerful court case tracking relational data base program, 
by Justice Department agents from Inslaw, Inc., its subsequent illegal duplication and 
transmittal to the Central Intelligence Agency and its illegal export to the security 
services of other countries like Syria, Iraq and Libya. 

The US Department of State for its lack of appreciation for data protection initiatives 
on the international stage and its blatant attempts to scuttle certain initiatives (this 
especially included allowing the Direct Marketing Association and the US Chamber 
of Commerce to dictate US data privacy policy in international fora). International 
initiatives to enhance personal data protection include the UN General Assembly 
Resolution, the EC Directive, the OECD Security Guidelines (watered down by the 
State Department), GATT negotiations (Subsection G of Article 14 of GATT's 
Uruguay Round Accord), and proceedings of the International Data Protection 
Commissioners Conference. Also for attempting to dissuade private US citizens from 
participating and voicing their opinions on the lack of a US data privacy commitment 
in international settings. 

Ross Perot for his alleged practice of maintaining personal dossiers on his political and 
business rivals including the President of the United States. Under standard European 
norms of data protection legislation such file keeping practices would be illegal. These 
practices also throw into question the data privacy ethics maintained by Perot's 
former and current data processing enterprises. 

760 



Executive Summary 

Panel: Health Issues Program 

Gerald S. Long, Chair 

Harrison Avenue Corporation 

812 Downs Drive 

Silver Spring, MD 20904 

(301)622-3177 

The health care industry covers a broad spectrum of information security needs and 

challenges. It is an industry which historically has used the paper medical record as 

the communal document of the health care team; physicians, nurses, health care 

specialists, technicians, educators, researchers, and administrators. A "white coat" 

generally being the admissions pass to the medical record. 

With computerized records, established ways are being challenged and "need-to- 

know" and special regulations limit access by members of the health care team to all 

or parts of the medical record and to other health care documents and information. 

Other regulations control the release of sensitive information, unauthorized 

modification of medical record information, as well as damage to, or interruption of, 

medical computer services. 

This program consists of 3 sections: a paper titled:  Analysis of the Applications 

Layer Security Requirements of a Medical Information System; 4 points of view 

concerning sensitive health care data, portable data carriers, control of "need-to- 

know" access to sensitive data, computer-based communications and automation of 

patient data, and the implementation of technology to implement patient care utility 

services; and a panel discussion prompted by questions from the chairperson and the 

audience. The panel members have agreed to stay beyond he 5:30 p.m. scheduled 

completion time to discuss the implications of a national patient database. 

761 



Point of View 
The Benefits of Smart Card Technology in the 

Health Industry 

Peter M. Fallon 
National Sales Manager 

Toshiba American Information Systems 

Today hospitals and health care providers are coming under increasing 
pressure to provide more cost efficient and better health care to their 
patients. They are struggling to operate with a paper based system that 
must be modernized with current technology. More and more rules are 
being put in place that demand the latest computer technology so that 
hospitals and other providers will be able to operate more efficiently for 
their patients' benefit as well as for their own bottom line. 

These new methods include the latest communication as well as up to 
date computer automation. Smart cards play a small, but important, 
part of that necessary, but very important, system updating process. All 
of these applications are based on the secure software and hardware 
features that are built into today's smart cards. As with most industries 
today, new secure measures must be inherent in any new system that 
will defeat any measures that may be put into use to mount a hardware 
or software attack on the system. 

Some of the applications we will discuss are as follows: 

•  Patient cards that would hold the following information 

Name, address, etc. 
Chronic medical problems. 
List of current medications. 
Last hospital visit. 
List of most important past operations. 
Allergies. 
Where to go to access more data about this patient. 

762 



• Use the card to order tests as well as patient billing and tracking 
within the hospital. 

Lab tests. 
X-rays. 
Drugs. 

• Financial information. 

Current insurance plan. 
Deductible. 
Medicaid information. 
Medicare information. 

• Tickler for patient health maintenance. 

• Special confidential note section for doctors. 

Lab or x-ray findings. 
Prescription information. 
Other providers involved with the patient. 

These are a few of the many applicable smart card applications. 

763 



Point of View 
National Health Card 

B. Bahramian, 
President 

Beta Management Systems, Inc. 

The ever increasing costs of health care have become a major concern of 
every American. Lowering the cost of health related services is 
imperative if the economy and reasonable standards of health care are to 
survive. Today's advancements in technology can help in generating 
tremendous savings in the health care administration. However, in 
virtually all cases, these benefits are realized as increased profits to the 
carriers and providers. The successful plan should be structured in a 
manner to assure that these savings are realized and applied in the form 
of reduced premiums to the individuals, companies, groups, or 
governmental entity that is paying for the health care services. 

Over utilization and redundant tests or procedures are the major 
elements in driving the health care costs to an astronomical level. 
Falsifying the identity of recipient is another factor which is costing the 
nation billions of dollars every year. All this can be reduced by 
introduction of a "National Health Card," with a built-in micro-chip 
which would carry the history, physical and clinical details as well as 
insurance coverage of individuals and the concealed photo ID of the 
beholder. The Cards may be used at hospitals, pharmacies or even in 
ambulances. This vehicle can help to integrate the society to receive the 
same treatment and services from providers, no matter who has paid for 
the premium. 

The solution in providing a satisfactory health care service is not in 
socializing medicine, or dragging the government into providing the 
desired services. The answer is people's participation in a national plan, 
organized at local levels, under a Health Commission Board, similar to 
the management of utility services. 

764 



Point of View 

The Optical Card as a Portable Medical Record 
Stephen D. Price-Francis, Manager 

Market Development 

Canon Canada, Inc. 

The Portable Medical Record, in the form of the "personal health card" or "patient 
card," is seen by many observers as a much-needed catalyst for change in the delivery 
of health care services. 

This vision foresees each individual carrying a complete medical history in a 
convenient and portable form - typically the size and shape of a credit card. The 
information stored on this record would duplicate and consolidate (but not replace) 
records currently stored in a variety of locations, such as physicians' offices, 
hospitals, clinics, pharmacies, and so on. 

This portable medical record would be always available, accurate and up-to-date and 
thus an invaluable tool for diagnosis and treatment, in both routine and emergency 
situations, and for referral. The record would be automatically updated during each 
health care encounter and carried away again by the patient. 

A topic of fundamental importance is that of privacy, both of the patient and the 
provider, and confidentiality of medical records. The patient-borne record represents, 
in effect, the ultimate distributed database, but with the advantage that real-time 
access to the information is available only with the informed consent of the patient 
(except, probably, in the case of emergency information). This is in contrast to the 
acknowledged risk of computer network penetration by the determined "hacker" who, 
if successful, could have access to thousands, or even millions, of clinical records. 

The data on the patient care will be protected from unauthorized access by 
encryption, with varying levels of access provided to different provider disciplines. 
Fraudulent copy or creation of a card can be prevented by a special technique of card 
"fingerprinting." 

The principal benefits of the system are expected to be better quality care and the 
containment of escalating health care costs. The application of this advanced 
technology will provide real advantages to the users and providers of the service, and 
deliver important relief to those paying for the system. 

This paper will consider why and how these benefits will be derived and look at an 
ideal technical solution to the problems posed. 

765 



Point of View 
Patient Data Confidentiality 

in the Health Care Environment 
Marc Schwartz 

Director of the Medical Services 
Summit Medical Systems, Inc. 

(612)473-3250 

For the majority of us, the most private part of our lives is our health. For those who 

are of ill health and come in contact with our health care delivery system, we enter 

into a world that is far from ideal when it comes to protecting that privacy. The 

recent forced disclosure by tennis star Arthur Ashe of his HIV status, demonstrates 

the anxiety we all have about the discussion of any details of our state of health. The 

potential embarrassment we must deal with and the impact on friends, family, 

lifestyle and even employment makes such a disclosure a difficult task indeed. 

Upon entering the health care environment, we find a world that is filled with such 

confidential information, a necessity to provide appropriate diagnostic and treatment 

options to the patient, yet with a system for protecting that data that is less secure 

than that which banks and airlines use for their least sensitive information. The 

typical point of storage of this information is the patient record. All of his or her past 

medical history, information about family, personal contacts, diagnoses, treatments, 

medications and personal patient-physician communications are contained in this 

important set of documents. 

For medical and legal reasons, each personal physician, specialist, hospital 

department, clinic, urgent care center, same day surgery center or other health care 

professional or facility must keep records of all contact with the patient. Thus a 

patient who has a chest x-ray after surgery, will find copies of the dictated 

interpretation in the radiologists office, the hospital x-ray department, the surgeon's 

office and likely a copy forwarded to his or her personal physician. The same 

situation occurs for many diagnostic or therapeutic treatments. This does not take 

into account "routine" conversations about patients that can take place anywhere 

from the patient care areas to the doctor's locker room and cocktail parties at which 

physicians and other providers can be overheard by people totally unrelated to that 

patient's care. 

766 



Another point of storage for this data is the clinical database. As opposed to the 

patient record, this system stores a sub-set of related information on many patients, 

usually including patient identifiers, thus facilitating statistical analysis of a specific 

group of patients, such as all patients undergoing open-heart surgery. Most academic 

institutions and many medical societies are involved in some form of research study, 

as are most medical device manufacturers in the process of bringing products to 

market or for post-market surveillance now required by the Safe Medical Devices Act 

of 1990. With increasing emphasis on cost-containment, many "outside" peer-review 

organizations, government agencies such as HCFA and insurers are utilizing this 

data to compile patient outcome based policies for anything from reimbursement 

criteria to physician and hospital standards of practice for quality assessment and 

professional credentialing. 

Each of these locations provides a possible "covert channel" for data leakage to 

unauthorized parties. The lack of standards for data storage, security and integrity 

provides a ripe opportunity for illicit entry into this mass of private data. Who is 

ultimately responsible for the protection of this data? What methods are in place to 

maintain its integrity? Can the patient review this data to make sure that it is 

accurate, just as one can review their credit history and request correction of 

inaccurate data. Would a patient even be in a position to know if such information is 

inaccurate without appropriate medical knowledge? Who is authorized to review this 

information and what access controls are in place to insure the procedure? What, if 

any, "need-to-know" policies are in place at each point in the chain of data 

repositories? Under what circumstances is the patient's authorization required for 

release of data to outside parties? What professional guidelines are in place to 

provide for ethically, if not legally, binding awareness on the part of the health care 

community? What type of protection is provided to the providers themselves, to 

protect these people from the invasion of their privacy? In this age of increasing 

competition in the health care environment, where the financial success of a provider 

is based on getting as many patients into their institution or group as possible; where 

mergers and acquisitions of hospitals and clinics are taking place almost daily; where 

medical advertising is becoming the rule; will providers engage in "industrial 

espionage" to gain covertly, information about competitors or their clientele (the 

patient) that can be of use for competitive advantage? How will the computerization 

of these records impact upon the security afforded this information? 

767 



Executive Summary 
Panel: 

Information Technology (IT)Security Requirements 

Mr. Dennis Gilbert, Chair, 
National Institute of Standards and Technology 

N. Lynch, National Institute of Standards and Technology 
Ms. Sadie Pitcher, Department of Commerce, 

Needs Study Working Group 
Dr. W. Maconochy, National Security Agency, 

FISSEA Chair 
Ms. Marianne Swanson, National Institute of Standards and Technology, 

CSBBSSYSOP 

Federal agencies and other organizations are faced with a variety of 
requirements concerning the protection of sensitive information and 
the resources used to store and process that sensitive information. 
These information technology (IT) security requirements derive from a 
number of sources. Among these sources are legal and regulatory 
responsibility; Privacy Act and other privacy concerns regarding 
employees, clients, and customers; fiduciary and custodial responsibility; 
national security; desire for public, client, and customer confidence; 
good management and business practice; fear of fraud and embezzle- 
ment; fear of litigation and increased regulation; and ethical concerns. 
The rapidly changing information technology environment and a 
number of short term and long term trends raise new IT protection 
concerns and challenges. 

What are these needs and requirements? How do we determine what 
help agencies and other organizations need to address these require- 
ments? What resources are available to help and what are the means to 
focus resources appropriately? 

A number of recent efforts attempt to address these questions. In one 
of these, the National Institute of Standards and Technology (NIST) 
conducted a study to help understand and document what federal 

768 



agencies need to satisfy their information technology (IT) security 
requirements. The study involved interviews with identified agency 
staff and the use of an IT security needs assessment survey. Respondents 
were asked to identify their IT security needs from a list of candidates 
and indicate their importance and immediacy. Other federal, private 
sector, and professional organizations completed the needs assessment 
survey form. A working group representing the federal and private 
sectors participated in the design of the study and the validation of 
study results. These results will be used by NIST to better gear its 
programs to help agencies satisfy those needs and to plan for the 
effective use of NIST resources. 

Other recent activities give us additional insight. These include: 

Computer security curriculum development efforts by the 
Federal Information Systems Security Educators Association 
(FISSEA) 

OMB, NIST, and NSA agency assistance visits made in 
accordance with OMB Bulletin 90-08 (and the results of the NIST 
and NSA Computer Security and Privacy Plans review effort 
done in accordance with OMB Bulletin 88-16) 

A NIST study of technical information protection methods used 
in computers or application systems in government and indus- 
try. (The study involved in-person discussions with key persons 
in 17 federal agencies, 10 commercial organizations, and one 
state government, between March and June 1991. Approxi- 
mately 120 people were interviewed. The study provided input 
to NIST's Minimum Security Requirements/Federal Criteria 
efforts.) 

This panel session will examine these activities and related activities. 
Also discussed will be: methods of IT security needs assessment that can 
be used by the audience; and resources available to address identified IT 
security needs. 

769 



INTERNATIONAL DATA PRIVACY: ROLL OF HONOR AND HALL OF SHAME 

Wayne Madsen 

P. 0. Box 302 
Moorestown, New Jersey 08057 

Within the past year, several organizations and people have stood out with regard to 
the issue of data privacy throughout the world. Fortunately, some have distinguished 
themselves in promoting the concept and cause of privacy of personal information. 
Others, however, have done their best to impede data privacy. The Roll of Honor and 
Hall of Shame distinguishes the clear lines that are being drawn in the battle for 
privacy on the international stage. 

ROLL OF HONOR 

Louis Joinet, of the UN Commission on Human Rights, for his tireless efforts to push 
data protection on a pan-European and international scale through the United 
Nations, Council of Europe and the European Community. 

Joachim Gauck, the Commissioner for Stasi records of Germany, for streamlining the 
process of disclosure of personal files to victims of Stasi surveillance in 1992. 

Askar Akayev, the President of the Republic of Kyrgyzstan for championing civil and 
political liberties including privacy rights in lands that were once the domain of 
Genghis Khan and are on the doorstep of the anti-democratic masters of Beijing. 

The governments of Poland, Lithuania, Latvia, Estonia, Czech Lands, Hungary, 
Slovenia and Bulgaria for bringing their secret security services under strict 
presidential control and legislative oversight and refusing to grant exemptions from 
data protection/privacy legislation that are either in effect or proposed. 

Privacy International and its Director-General, Simon Davies for organizing privacy 
advocates on a truly international scale. PI is taking on powerful privacy intruders in 
areas where they have for so long commanded almost unchallenged supremacy. 

The Government of New Zealand for being the latest nation to adopt a Privacy Act, 
the Privacy Commissioner Act of 1991. 

The Government of Japan and its Ministry of Posts and Telecommunications for 

The views expressed herein are the author's and do not necessarily represent the views of his 
employer or his publishers. 

770 



extending privacy guidelines to the telecommunications industry. These guidelines are 
in conformance with the OECD Guidelines Governing the Protection of Privacy and 
Transborder Flows of Personal Data of 1980. 

Prime Minister John Major of the United Kingdom for trying to overhaul Britain's 
antiquated system of maintaining an inordinate amount of secrecy of government files. 
Major has championed a Citizens' Charter which grants British citizens freedom of 
information and access rights to previously classified government data. 

The newly democratized nations of Africa for promoting civil and political liberties 
including the right of privacy in countries that have never experienced enforceable 
constitutional provisions for individual rights and liberties. These nations and their 
new democratic leaders include Zambia (Frederick Chiluba), Ethiopia (Meles Zenawi), 
Benin (Nicephore Soglo), Sao Tome and Principe (Miguel Trovoada), Cape Verde 
(Antonio Monteiro Mascarenhas), Mali (Alpha Oumar Konare), Congo (Andre Milongo), 
Rwanda (Dr Dismas Nsengiyaremya), and Togo (Joseph Kokou Koffigoh). 

The Data Protection and Privacy Commissions of the UK, Isle of Man, Ireland, Jersey, 
Guernsey, Finland, France, Sweden, Denmark, Faeroes, Germany, Iceland, Norway, 
Austria, Belgium, Netherlands, Portugal, Luxembourg, Japan, Australia, New Zealand, 
Canada, Israel, Quebec, Ontario, New South Wales, Slovenia, Hungary, Hesse, 
Rhineland-Palatinate, Saxony, Lower Saxony, Saxony-Anhalt, Thuringia, Bremen, 
Berlin, Bavaria, Hamburg, Saarland, Brandenburg, Mecklenburg-West Pomerania, 
Baden-Wurttemburg and Rhineland-Westphalia, the Commission of the European 
Communities, Council of Europe, and the Organization for Economic Cooperation and 
Development for their international cooperation on furthering the goals of data 
protection and leading the way for those nations that have yet to pass data protection 
legislation. 

HALL OF SHAME 

The European Parliament's Committee on Legal Affairs and Citizens' Rights"  for 
*** 

**lncluding its members: Chairperson Franz Ludwig Graff von Stauffenberg (Germany, 
Christian Social Union), First Vice Chairperson Marie Claude Vayssade (France, Socialist Party), 

• Second Vice Chairperson Willi Rothley (Germany, Social Democratic Party), Rapporteur Geoffrey 
Hoon (United Kingdom, Labour Party), Giorgios Anastassopoulos (Greece, New Democracy), Juan 
Maria Bandres Molet (Spain, People's Left), Rinaldo Bontempi (Italy, Party of the Democratic Left), 
Carlos Maria Bru Puron (Spain, Spanish Workers Socialist Party), Patrick M. Cooney (Ireland, Fine 
Gael), Michael N. Elliott (United Kingdom, Labour Party), Alexander C. Falconer (United Kingdom, 
Labour Party), Manuel Garcia Amigo (Spain, Popular Party), Johanna Christina Grund (Germany, 
Republican Party), The Lord Inglewood (United Kingdom, Conservative Party), James L. Janssen 
van Raay (Netherlands, Christian Democratic Appeal). Francisco Antonio Lucas Pires (Portugal, 
Social Democratic Center Party), Anne Carolyn B, Mclntosh (United Kingdom, Conservative Party), 
Nora Mebrak-Zaidi (France, Socialist Party), Manuel Medina Ortega (Spain, Spanish Workers 
Socialist Party), Christine M. Oddy (United Kingdom. Labour Party), Giorgios Saridakis (Greece, New 

771 



watering down the proposed EC Directive concerning the protection of individuals in 
relation to the processing of personal data. 

The Attorney General of Australia for not addressing privacy concerns in the creation 
of the Law Enforcement Access Network (LEAN), exempting LEAN from the 
provisions of the Australian Privacy Act of 1988, and providing virtual unrestricted 
access to some 40,000 users. 

Prime Minister Brian Mulroney for proposing the combination of the Federal Privacy 
and Information Commissions. Such a move would weaken both offices and have a 
detrimental effect on data privacy of Canadians. 

The Royal Canadian Mounted Police (RCMP) for placing a paid informant in the 
highest echelon of the former Parti Quebecois government of Quebec. The informant, 
a Minister for Intergovernmental Affairs, provided confidential information to the 
RCMP between 1975 and 1977. 

The government of President Carlos Salinas de Gortari of Mexico for permitting illegal 
government surveillance of the Mexican National Commission of Human Rights and 
ignoring abuses of individual rights in the states of Sonora, Baja California, Morelos, 
Veracruz and Guanajuato. Added to this list is the US Administration for not 
pressuring Mexico to guarantee personal privacy as part of the North American Free 
Trade Agreement (NAFTA), especially with regard to the protection of data on US 
citizens processed by data centers in Mexico. 

President Alberto Fujimori of Peru for imposing a dictatorship on Peru and giving 
new and widened powers to the National Intelligence Service (SIN) of Peru. SIN is 
piling up personal dossiers on opponents of Fujimori's illegal regime, including 
members of the dissolved Peruvian Congress, the dismissed members of the Supreme 
Court and human and political rights activists. 

The Government of the People's Republic of China for continuing its abusive methods 
of maintaining personal dossiers on much of the Chinese population, for using these 
files for repression of Tibetan nationalists and Chinese democratic forces, and using 
surreptitious computer eavesdropping methods to infringe on the privacy of Hong 
Kong citizens' financial and other business affairs. 

The government of India for continuing the dossierization of political and religious 
groups within the country that are opposed to Indian government policies, including 

Democracy), Lode J. C. van Outrive (Belgium, Flemish Socialist Party) and Anthony J. Wilson (United 
Kingdom, Labour Party). While support to water down the EC Data Privacy Directive was not too 
surprising from the member representing the German Republican Party, a neo-Nazi group, the 
support from moderates, socialists and moderate conservative parties was probably the result of 
very active lobbying from the American Chamber of Commerce, US magazine publishers, US and 
European direct marketing groups and US and European computer vendors. 

772 



groups fighting for self-determination. 

The government of Indonesia for its repressive data base program known as 
Penelitian Khusus which is aimed at identifying and vetting opponents of the regime 
and denying them their civil and political rights. 

The government of Israel for not applying the provisions of the Privacy Act of 1981 
to the Palestinian residents of the West Bank and Gaza. Palestinians are required to 
carry bar-coded identity cards and their personal data is stored on government IBM 
mainframes. They have no right to inspect their data nor seek correction or deletion 
of erroneous or irrelevant data. 

Western computer firms for selling sophisticated data base management systems and 
smart card technology to countries wishing to use such systems for population 
surveillance and control. 

INTERPOL for not addressing the problems associated with developing an automated 
international criminal information system with input and output to national criminal 
information systems like NCIC2000, PNC2, CPIC, LEAN, Schengen Information 
System, INPOL, etc. and in failing to resist US attempts to computerize millions of 
INTERPOL files without extending required privacy provisions to automated criminal 
data bases. 

The German media for its irresponsible actions with regard to Stasi files. Several 
German newspapers and magazines have been too quick to publish the names of East 
German informers, and in so doing have destroyed many promising careers and have 
driven some people to suicide. 

The government of Iraq for operating an intelligence network that spied on Kurds 
abroad. Extensive files were maintained on Kurds living in North Dakota, Detroit, 
Miami and Washington, DC. Added to this list is the US Justice Department for 
neither warning nor preventing such activities against Kurdish-Americans and Kurds 
resident in the United States because of the now well-known pro-Iraq "tilt" of the US 
Administration at the time Iraqi surveillance was being conducted. 

The government of Vietnam for its surveillance activities of Catholics and human 
rights activists. The Vietnamese intelligence agency, Quan Bao, operates one of the 
last communist secret police apparatuses. 

773 



Executive Summary 
Multilevel Security (MLS) Prototyping and Integration: 

Lessons Learned and DoD Directions 
C. West, Chair, 

Defense Information Systems 

This panel will provide an overview and some focused insights into 
the MLS prototyping and integration efforts in DoD. A DoD MLS 
program was established in January 1990 with three major functions. 

• to plan and coordinate DoD MLS projects and initiatives 
• to develop and evaluate generic solutions at designated 

testbeds 
• to provide engineering assistance to implement MLS capabilities 

The panel will focus on the specific tasking of the DoD MLS program 
relative to testbeds: 

- Using MLS testbeds to assess and integrate products 
- Developing tools, techniques and integration methods 
- Migrating capabilities from testbeds to operational systems 

DoD has been involved with an MLS Testbed at USTRANSCOM since 
1988. The panel will cover lessons learned from the MLS Testbed at 
USTRANSCOM and service and agency testbeds. Included will be 
discussion of a new NSA initiative to expand the evaluation process from 
products only to security profiles for integrated sets of products and 
guidelines that NSA will be developing that have been influenced by the 
testbed efforts. The status of current plans to establish a DoD MLS 
Central Testbed will be reviewed. The purpose of the DoD MLS Central 
Testbed is to focus on generic solutions, provide a development facility 
for support of the CINCs and other high priority DoD users, assess 
products and advance new approaches for DoD wide applicability. The 
current and planned initiatives of the DoD MLS Central Testbed and 
service and agency MLS testbeds will be covered by the testbed 
managers. An index of available lessons learned documentation will be 
provided to attendees. These include surveys and assessments of MLS 
workstations and MLS local area network alternatives. 

774 



Executive Summary 
Workshop: New Security Paradigms 

Hilary Hosmer, Chair 
Data Systems, Inc. 

On Tuesday, October 13 (2:00pm. - 5:30 p.m.) and Wednesday, October 14 

(9:00a.m. - 12:00p.m.), Ms. Hilary Hosmer, President, Data Security Inc, will chair 

a workshop focusing on new security paradigms. Shifts in paradigms, our 

fundamental models or views of reality, are like earthquakes. They disrupt the 

status quo, destroy outdated ideas, and open the way to new possibilities. The 

interoperability and flexibility users require in trusted systems may exceed the 

capability of the current TCSEC paradigm. Yet, there is no superior alternative in 

sight. Conference attendees are invited to share their ideas and perspectives for 

new security paradigms in a creative and constructive workshop which is half 

presentation and half discussion. 

The Tuesday program is based on the best efforts of the New Security Paradigms 
Workshop (Little Compton, Rhode Island, September22-24, 1992). The New 

Security Paradigms Workshop papers will be edited by Dr. V. Ashby, The MITRE 

Corporation and published by the ACM SIGSAC. The papers presented during 

Wednesday's program are refereed by the National Computer Security 

Conference. 

Tuesday     October 13,1992 

2:00  -   2:05     Introduction 

H. Hosmer, Data Security, Inc. 

2:05  -   2:25     A New Paradigm for Trusted Systems 

Dr. D. Denning, Georgetown University 

2:25  -   2:45      Discussion Leader: Dr. L. LaPadula, The Mitre Corporation 

2:45  -   3:05     New Paradigms for High Assurance Software 

Dr. J. McLean, Naval Research Laboratory 

3:05  -   3:25      Discussion Leader: E. Leighninger, Dynamics Research 

Corporation 

3:25  -    3:45      BREAK 
3:45  -   4:05     Managing Complexity in Secure Networks 

Dr. D. Bailey, Galaxy Systems 

775 



4:05  - 4:25 

4:25  - 4:45 

4:45  - 4:55 

Discussion Leader: Dr. M. Abrams, The Mitre Corporation 

"Best Paper of the New Security Paradigms Workshop" 

Discussion Leader: E. Leighninger, Dynamics Research 

Corporation 

4:55 -   5:30     Panel Discussion 

Dr. J. Dobson, Newcastle upon Tyne 

Dr. D. Bailey, Galaxy Systems 

Dr. D. Denning, Georgetown University 

H. Hosmer, Data Security, Inc. 

Dr. L LaPadula, The Mitre Corporation 

Dr. J. McLean, Naval Research Laboratory 

Wednesday     October 14,1992 

9:00  -    9:05   Introduction 

Dr. J. Dobson, Newcastle upon Tyne 

9:05  -    9:25   The MultipolicyParadigm 

H. Hosmer, Data Security, Inc. 

9:25  -    9:45   Discussion Leader: Dr. T. Haigh, Secure Computing Corporation 

9:45 - 10:05   MetapoliciesII 
H. Hosmer, Dafa Security, Inc. 

10:05  - 10:25 Discussion Leader: Dr. L. LaPadula, The Mitre Corporation 

10:25  - 10:40 BREAK 

10:40  - 11:00 Separation Machines 

Dr. J. Graff, Amdahl 

11:00  - 11:20 Discussion Leader: M. Smith, AT&T 

11:20  - 11:40 Mediation and Separation in Contemporary Information 

Technology Systems 

J. Heaney, The Mitre Corporation 

11:40  -   11:55 Discussion Leader: E. Leighninger, Dynamics Research 

Corporation 

11:55  -   12:00 Wrap Up, Dr. J. Dobson, Newcastle upon Tyne 

lie 



Presented at the ACM SIGSAC New 
Security Paradigms Workshop, Little 
Compton, Rhode Island.  September 1992 

Managing Complexity in Secure Networks 

D. Bailey, 
Galaxy Computer Services 

Santa Fe, NM 

July 1992 

Abstract 
The "Security Island" physical security paradigm, on which we base our concepts 

of protecting computer systems, derives from notions of centralized control and isola- 
tion. Implicit in this view is the need for "global understanding" of the system being 
protected: it must, in principal, be possible for a single person to know about all of 
the data paths and security controls within the system. Otherwise, it is not possible to 
analyze adequately the protection afforded by the system. As a system grows in size and 
complexity, maintaining global understanding becomes increasingly difficult, and ulti- 
mately it is impossible. This note suggests two alternate paradigms that show promise 
of surviving the complexity threshold at which the security island paradigm collapses. 
The "Secure Telephone" paradigm distributes protection responsibility to data objects. 
The effect of this is a dramatic limitation on the number of network components that 
are security relevant and a corresponding reduction in the complexity of the security 
problem. The "VIP Protection" paradigm uses graded protection and assurance to 
protect sensitive resources. Using strong protection only where it is needed and weaker 
measures in less sensitive areas reduces system cost and focuses security attention where 
it is most needed. 

Do We Need a New Paradigm? 

A large or complex computer network poses many difficult security problems. The hardest 
of these seem to stem directly from the complexity of the network. The trouble is that 
our ideas of how to protect computer systems and networks'" are derived directly from our 
past experiences with physical security systems. The physical security paradigm, which we 
might call "security islands," is based on isolation and hierarchical control. As network size 
and complexity grow, hierarchical control becomes increasingly difficult to manage. It is 
no longer possible to "understand" what the system really does, it is no longer possible to 
analyze the implications of change, and it is no longer possible to decide that development 
is being performed correctly. 

This paper will explore the security islands paradigm and where it leads, followed by 
two "new" paradigms (neither of which is at all new). One paradigm is based on rejecting 
hierarchical control, and the other is based on rejecting isolation. 

'For the purposes of this paper, any distinction between the ideas of "computer system" and "com- 
puter network" is irrelevant. In the remainder of the paper I will use the terms "system" and "network" 
interchangeably. 

777 



Security Islands 

The security island paradigm is the primary paradigm used for designing physical security 

systems for fixed plant sites. A sensitive operation is located in a building somewhere. To 
protect it, we establish a security perimeter, build a. fence, put guards at the gates, and 

control who can enter and exit. 
Variants on this scheme are used when the requirements vary. Sometimes the perimeter 

is not made obvious with a fence and the guards are less visible. Sometimes the perimeter 

is arranged so that the public can enter part of the facility. Sometimes it is necessary to 

segregate part of the site population from other parts. The basic design, however, remains 
the same. One person is in overall control of facility security. That person knows what 

assets are being protected and how the protection is being accomplished. He or she is in 

a position to analyze the effects of changes and to establish whether security changes have 
been made correctly when the operation changes. 

When it first became necessary to protect computers, the job was assigned to the physical 

security manager for whom the techniques to be applied were obvious. In the early days, 
when the system was a single machine that ate cards and produced listings or tapes, the 
techniques applied by the physical security manager worked very well. Over the first decade 

of computer security experience, a large body of knowledge was accumulated and became 
well entrenched. The techniques that developed had only one minor problem—they were 

inadequate for the remote access time-sharing systems that were coming into vogue at the 
end of the period. 

Now, another fifteen years later, we are left with a legacy of physical security attitudes 
and practices that have been gradually bent and stretched to their limits to accommodate 

new technology. Computer networks have grown large despite the active resistance of se- 
curity managers. During this growth, we have retained the attitude that a network is a 
collection of separately accredited components that have to share data. 

For a closed system of two computers, it is relatively easy to decide what controls are 
needed. As this system expands into a larger network, it becomes necessary to compute the 

transitive closure of every allowed flow in order to make network-high or global statements 

about the protection of data. This cannot be done without computational assistance; one's 
intuition no longer works because the flows may be complicated. This assistance must 

be obtained from the very systems that the security manager is loath to trust. It is not 

difficult to see why the security of networks is thought to be a hard problem. It is also 
not difficult to see why security managers typically believe that the computing people are 
out of control; and computing people, for whom new network connections are easy, think 
of security managers as paranoid bureaucrats. 

We should not be terribly surprised at these results. The separate accreditation of 
network components is the network analog of creating a new security area, at the protected 

site (another security island). Adding several thousand new physical security areas at the 

site would make the site unmanageable—and it doesn't work any better with computers. 

It is attractive to accredit separately because the other alternative, that of re-evaluating 
the entire network every time a new node is added, is an obvious failure. Unfortunately, it 

seems to be necessary for a single person to understand the operation of the entire network 

778 



in order to understand its security properties. For many existing networks, it is already 
impossible for a single person to understand the entire network operation. Clearly, any 

network can grow to this state. For example, the Department of Energy presently has at 
least three networks of approximately 10,000 a.ccreditable nodes. This is already too big. 

By the end of this century, DOE will have responsibility for at least one network with 
approximately 100,000 accreditable nodes. This is far too big. 

As a result of the size of many existing networks, any security policy or management 

scheme based on "global understanding" of the network is bankrupt. Such a policy, while 
adequate for a small network will ultimately be insufficient. The result of long term devel- 
opment may be failure of the network to provide adequate service to its customers because 

its security managers or accreditors are conservative. Development can also be continued 
beyond the point where it is adequately secure because the developers are persuasive. Most 

likely, both results will occur. 

The natural human response to this situation is to modularize. We want to break the 
network into independent pieces that can be understood separately and whose interactions 

can be analyzed pairwise. Within the Department of Energy community, we have used a 
concept called partitioning to provide the needed modularity. A partition* is a division of 
the components of a network for access control purposes such that no component is in more 
than one partition. The systems within a partition that serve users directly must have the 
same protection requirements, and the users must satisfy a. common clearance requirement. 
Relatively free exchange of information is allowed within a. partition. For the purposes of 
security analysis, the systems within a. partition are all equivalent. One can think of them 

as a single system, even though they may not offer this functionality to their users. 

Partitioning, applied to collections of operating systems, was an adequate paradigm for 
the '70s and the early '80s when interactions were between separate systems and were fairly 

simple. It put off the inevitable for another decade. It is much less adequate today when 
intersystem interactions are more numerous, occur at a lower level of detail in the network, 

and are less obvious to the user. Network File Systems (NFS) and diskless workstations, 
where the use of the network to obtain a requested piece of information is completely hidden 
from the user, are good examples of this new style of interaction. 

The new types of system interaction demand a new paradigm for modularizing security, 
while also making modularization more important. Since the interactions are occurring 

(that is, are initiated) at a lower level in the system, the modularization must be finer 
grained than partitions. Instead of discussing how this VAX communicates with that IBM 

system, we must move down to the level of interactions between processes. 

The following discussion offers two new paradigms for modularizing network protection. 
In the first, we will categorize systems based on the amount of internal mechanism needed 

to provide adequate security in the operating environment seen by the system. Systems 
requiring the same degree of trust will be characterized by an index number called the 

"Trust Index." The idea is to focus attention and to place security mechanisms, which 
are expensive, where they are most needed. The other paradigm, based on ideas of the 
secure telephone system, reflects the need for centralized control of the network. Security 

'Boldface words are being defined. Tlie definition follows immediately. 

779 



responsibility is distributed to its logical extreme to see what the effects might be. Neither 
one of these paradigms solves all of the problems or renders security easy. Security is not 
easy and many hard problems still have to be solved. However, it may be possible to survive 
the imminent collapse of our ability to protect data, in large networks. 

Protecting VIPs 

The problem of protecting important people (a physical security problem), offers some 
interesting insights. To begin, the problem is dramatically different from the problem of 
protecting fixed plants. There is no fixed or well determined security perimeter. The asset 
is continually moving through an environment that is largely friendly but is presumed to 
contain some very hostile elements. It may or may not be possible to identify these hostile 
elements with their unknown intentions. 

This problem seems more difficult than protecting a fixed and slowly changing computer 
network, but it is solved every day. We should be able to draw some lessons from how it 
is done which can be applied to the network problem. One technique that is relatively 
easy to transfer is the idea of many layers of protection. Protection of a Head of State 
includes at least four layers. The strongest protection is immediately around the VIP, and 
the layers get progressively weaker as the distance from the asset increases. The outer 
layers are not only weaker, however, they are also less trusted than the inner layers. The 
outermost security layer for a Head of State consists of increased surveillance by the local 
police. While the local police perform a valuable service, they are completely untrusted by 
the VIP's immediate bodyguard. This idea of layers of protection transfers very readily to 
various levels of sensitive data. 

Sensitive data requires protection. More sensitive data requires more protection. How- 
ever, sensitivity alone does not mean that protection mechanisms must be built into the 
system. Often, better protection of data can be obtained by physical means. The require- 
ment for an internal protection mechanism arises from the need to operate over a range 
of sensitivities either in the data, in the authorization of the users, or both. Because of 
the range of sensitivities, we must trust the system to make critical decisions: should this 
person obtain that data; should this process perform that function. "More sensitive data 
requires more protection," may simply mean a stronger lock on the door. To reiterate, 
a range of sensitivites or authorizations imposes a need for internal mechanism. A wider 
range imposes a need for stronger mechanisms. For example, let's look at a system which 
processes Secret data for a community of users all cleared at that level. The internal mech- 
anism becomes one of convenience to allow the users to do their work without getting in 
each other's way. Another system which processes Top Secret data for a community of users 
all cleared at the Top Secret level would have the same internal mechanism to do this job, 
but the physical security might need to be different. A system which had both Secret and 
Top Secret data would require a stronger internal mechanism in order to keep the two types 
of data separate. This system, then, would have an internal security boundary which the 
system would have to manage in order to keep the two types of data separate. 

Different components of a network see different local environments.   Each component 

780 



lives in some neighborhood of the network that consists of network components with which 
it can directly communicate. For example, a network neighborhood might consist of com- 
ponents on a local area network. Components that only communicate with each other 
indirectly would be in different neighborhoods. Network components that live in different 
neighborhoods may have different levels of sensitivity. If the network as a whole processes a 
wide range of sensitivities, then some components will be faced with a range of sensitivities 
and will require enough mechanism and enough trust (assurance of correctness) to handle 
that range of sensitivities. However, as with the bodyguard, there is no reason to suppose 
that all components of a network need to be trusted to the same extent. Hence, the Trust 
Index, a label used to distinguish components that must be highly trusted from those that 
can be trusted less, becomes a useful concept. 

Trust Neighborhoods satisfy the need to modularize. Using them, one can divide the 
network into regions or neighborhoods that are equivalent in the sense that all connected 
components in the same neighborhood "see" the same protection environment and process 
the same range of sensitivities. It is then possible to consider each neighborhood as a unit 
and assess the requirements for controlling flow between the units. 

As with partitioning, the trust neighborhood decomposition imposes an equivalence class 
structure on the network where the number of equivalence classes is much smaller than the 
number of components. Even better, the number of classes does not usually grow when new 
nodes are added to the network because they are usually added in existing neighborhoods. 
This eases understanding of network security and provides a way out of the growth problems 
described earlier. 

A formal data flow policy can be described that provides rules for moving data between 
different trust neighborhoods. One can limit the exposure of data by forbidding direct 
communication between components that differ greatly in trustworthiness. Instead, data 
flows gradually from highly trusted components through components that require less trust 
because they are protecting less and making less complicated decisions. For example, the 
policy would not allow direct connection of an "open"" workstation to a system processing 
sensitive data, but it would allow indirect, appropriately protected data flows. A somewhat 
analogous situation can be seen in VIP protection. Generally, people are allowed to move 
somewhat freely into and out of the immediate area occupied by the asset. However, high 
speed movement that appears to be directly toward the asset would be stopped early and 
as far away from the asset as possible, which illustrates a soft, permeable boundary that 
stiffens rapidly as a function of the rate of penetration. 

The Secure Telephone System 

There are several ways to simplify the security structure of networks. The Trust Neigh- 
borhood model described in the previous section suggested a decomposition of network 
components that focuses design attention on those components that need internal security 
mechanisms to fulfill their responsibilities.  This model may be very useful in connection- 

*An open system means that the system can be made available to users without consideration of their 
clearance. It does not necessarily mean that use is completely unrestricted. 

781 



rich environments where it is difficult to establish the security perimeter or where external 
connections are needed even though sensitive data is processed locally. The trust neigh- 
borhood decomposition rejects the notion that complete isolation is necessary to be able to 
protect sensitive data. The following paradigm rejects the notion that hierarchical control 
is necessary. 

The secure telephone system consists of telephone units called STUs (secure telephone 
unit) and a centralized key distribution system (KDC) for creating encryption keys. The 
STUs have two main functions: (1) to provide secure voice communication with other STUs 
and (2) to recognize and refuse to communicate with STUs that have been lost or stolen. 
They guarantee a level of communication security by negotiating with the remote STU and 
with the key distribution center at the time a call is established. All of this negotiation is 
hidden from the users. The user simply pushes a button labeled SECURE and waits to be 
told if he may continue the call at some level of security. 

In the secure telephone system, security responsibility is distributed outward to the 
users. A network mechanism is provided that obviates any requirement for security mech- 
anisms built into the network itself. It is not even necessary to know that secure commu- 
nication is possible at the time a call is initiated. The connection is established, the need 
for and possibility of security is negotiated, and the secure connection is established using 
a trusted third party. After this occurs, the communicating parties still have the option of 
deciding not to communicate—the final access control occurs using the secure connection. 

Security in the telephone system is established using a mixture of a particular encryption 
technology and human judgment. A computing network could be established today using 
this technology, but it would not be a very capable or convenient network. A more effective 
but more radical approach would be to distribute responsibility for protecting data to the 
data itself. 

Suppose that an object* were really able to guarantee that the only way to get to its data 
is through its methods.* Let's consider the potential effects on the security requirements 
for a network. To be gelatinous, if not concrete, consider a local area network comprised 
of workstations (not necessarily single user, but probably one at a time except for NFS 
mounts), and a print server. The OOP paradigm works in the following manner. A process 
object obtains information from a data object by sending it a message. Access control is 
performed by the data object according to the object's policy. The object's policy may be 
different from every other object's policy and may be quite complex. It may, for example, 
include consideration of user identity, clearance, and role. It may also include consideration 
of the local processing environments of both the requesting object and itself, as well as other 
information. 

If protection responsibility and capability are given to a data object, then many other 
requirements could disappear. There would no longer be any security requirement on the 
transmission medium itself. There would be no security requirements on a file storage 
system other than being able to return objects that had been previously stored. This would 
take care of two currently pressing issues: how to protect data when all the users use 
removable media, and how to securely implement Network File Storage systems. Even the 

'that is not object as in subject and object, but object a la OOP (Object Oriented Programming) 
'Encryption may be a way to do this, but it may not be the only way or the best way. 

782 



access control requirements for workstations would disappear—users would establish access 
rights directly with the data object, not the underlying system. 

Operation of a print server would be somewhat different than it currently is. The print 
server would need to establish dynamically that the data to be printed is printable there. 
Security restrictions might prevent creating particular documents on particular printers, 
and these restrictions could vary in time. For example, what is permitted now may not 
be allowed in ten minutes if a particular person leaves the room. Thus, when requested 
to print, a data object would not respond with a stream of text that could be sent to a 
printer. Instead, it would respond by creating a printable object that would be able to 
decide, through its methods, whether to print on a particular printer. This object would 
be sent to the print server, would negotiate with the print server the conditions of printing, 
would print the requested number of copies, and then self destruct. 

Obviously, there are many difficult problems that need to be solved to make this vi- 
sion a reality. The attractiveness of the paradigm comes from its ability to localize and 
simplify network security concerns. This happens partly because the need for hierarchical 
administration and global understanding of the network have been eliminated. An object 
containing sensitive data can be moved freely around the network. It is no longer necessary 
to consider whether the object can be accessed in a particular location before sending it 
there. In the secure telephone system, the central administration does not have a precise 
idea of how big the network is or where aJl the nodes are located. Likewise, the central 
network administration need not know the extent of the computer network or exactly where 
sensitive data is processed. The central administration establishes rules for local protection 
and local connection to the larger network, implements most of them in the object support 
mechanism, and leaves the rest to local administration. 

Conclusions 

This paper makes the argument that centralization, isolation, and hierarchical control will 
ultimately defeat our ability to make large and complex networks that we can trust. In 
fact, this has already happened. It suggests two new ways of looking at network security 
that reject traditionaJ notions of network security management and facilitate a movement 
to more complex, more capable networks that can be trusted. Although not argued here, 
both paradigms are formalizable and, hence, it will be possible to study them systematically 
and demonstrate systematically that implementations have been made correctly. 

783 



Presented at New Security Paradigms Workshop, ACM SIGSAC, Little Compton, RI, Sept. 22-24, 
1992. 

A New Paradigm for Trusted Systems 

• 
Dorothy E. Denning 

Georgetown University 
Computer Science Department 

Washington, DC 200057 
202-687-5703 

denning@cs.georgetown.edu 

The Current Paradigm and Breakdown 

The current paradigm for trusted computer systems holds that trust is a property of a system.   It is a 
property that can be formally modeled, specified, and verified.   It can be "designed into" a system 
using a rigorous design methodology.   For high levels of assurance, the design methodology uses 
formal models and methods in order to "prove" that trust is present. 

This paradigm underlies "The Department of Defense Trusted Computer System Evaluation Criteria," 
[3] commonly called the "Orange Book," and its companion "rainbow scries" reports.   In this paper, I 
will refer to these documents as the "Criteria."   The Criteria specifies a methodology for modeling, 
designing, and implementing a system that builds trust into a system, and a process for proving to an 
evaluator that the methodology has been followed.   For a description of the Criteria and the evaluation 
process, sec Chokhani [1]. 

Application of the Criteria has been fraught with problems for both developers and evaluators.   Steve 
Lipner clearly articulated this breakdown in the keynote address at IFIP-SEC 91 [4].   The problems he 
identified include: 

1. Systems are not operated in their evaluated configuration.   Evaluated systems are penetrated 
because they are not properly configured or operated. 

2. The Criteria apply to operating systems products, whereas actual operating environments include 
heterogeneous networks and applications. 

3. Applications must run with "privilege," overriding the operating systems controls.   Evaluation 
becomes irrelevant.  There is no experiential basis on which to build application-level criteria. 

4. Real systems are vastly more complex than their security models.  The vendors learn what system 
settings, tools, and documentation are needed from the experiences of their customers with their 
products. 

5. The security management documents are thick and there is a forest of controls.   The paperwork 

784 



required of vendors is an enormous burden. 

6. By the time a product has been evaluated, it is obsolete. 

7. The Rating Maintenance Program (RAMP), which was designed to allow vendors to self-evaluate 
new versions of a product, imposes a plethora of paperwork, checking, bureaucracy, and 
mistrust on vendors. 

8. No one knows what a class C2 system is.   Part of the problem lies in applying an abstract model 
of subjects and objects to real systems when it is not at all obvious what should be subjects and 
objects in the system.   Because of these problems, it has been necessary to produce 
"interpretations" of the Criteria.   The interpretations grow and change as new systems are 
evaluated, but nonetheless remain ambiguous. 

Lipner offers some suggestions for improving the process.   While his suggestions are likely to 
alleviate some of the problems, I propose that we also rethink the question "What is a trusted system?" 
My initial investigation into this question suggests that the current paradigm, which treats trust as a 
property, is inconsistent with the way trust works in the world.   By shifting to a paradigm that is 
consistent with the realities of trust, we may be able to produce trusted systems at considerably 
reduced cost, effort, and aggravation.   I shall propose such a paradigm here, and I invite the reader to 
explore its implications with me. 

The need for a paradigm shift is not limited to the domain of security.   Peter Denning [2] has noted 
that software quality is held as a property that can be designed into a system by a four-stage process: 
formulate the requirements, develop formal specifications for the requirements, develop programs from 
the specifications, and demonstrate that the programs meet the specifications.   He proposes a shift in 
paradigms by refraining the question "What is software quality?" to "How do we satisfy the customers 
of our software?" 

The paradigm for trusted systems presented here similarly focuses on producing systems that satisfy 
customers, in this case, systems that customers trust in the domain of security. 

What is Trust? 

Trust is an Assessment 

The word "trust" is used with people, organizations, and objects.    It is an assessment that a person, 
organization, or object can be counted on to perform according to a given set of standards in some 
domain of action.   As an assessment, it is a declaration made by an observer rather than an inherent 
property of the person, organization, or object observed. 

For example, we may trust a person to speak truthfully, keep promises, arrive on time, give an 
entertaining talk at a conference, represent our concerns at an important meeting, lead a project, 
implement a program, fly an airplane, or perform open heart surgery.   We may trust an organization to 
keep our records confidential, deliver certain types of products or services, or refund our money if we 
are unsatisfied.   We may trust an airplane to not crash, a bridge to not collapse, the groceries we 
purchase to not be contaminated or poisonous, or a program to perform its stated function and not 
have undesirable side effects. 

785 



An assessment of trust is always relative to a domain of action.  We may trust a person to give a 
stimulating lecture on computer crime, but not trust them to fly an airplane or cook a Thai dinner. 
We may trust a woodworker to produce a cabinet of exceptional quality, but not trust them to deliver 
it on time.  Thus, people are not simply trusted or not trusted, but rather trusted or not trusted in a 
particular domain.   However, we often lose the distinction of domain, generalizing assessments of trust 
across domains.   For this reason, we often hear people say things like "This person cannot be trusted." 

Likewise, an assessment of trust is always made against a set of standards in the domain of action. 
These standards evolve in communities of people who interact and coordinate action together, and 
they may differ from one culture to the next.  They are often loosely defined or subjective, for 
example, standards for a "good teacher," a "good restaurant," or a "good department."  They may be 
so ingrained in our culture that we are not even consciously aware of their presence. Yet they play a 
critical role in our coordinated actions in the world. 

The domains and standards for trust change over time as new technologies come to market and new 
breakdowns occur.  A few years ago, nobody was concerned about whether a floppy disk might 
contain a computer virus or other form of malicious code.  Now people are reluctant to trust a disk if 
they are not sure of its origin.  The Tylenol scare led to higher standards for packaging drugs and 
other goods. 

An assessment of trust may or may not be grounded.   It is grounded if evidence can be produced that 
the standards arc met.   Otherwise it is ungrounded.   In many situations, it is less important whether an 
assessment is grounded than whether it is believed.   People act out of their beliefs even when there is 
no evidence to support them. 

How Assessments of Trust are Made 

We make assessments of trust based on our experiences in the world.   As we interact with other 
people, organizations, and objects, we observe the effects and form our assessments.   If a person 
consistently keeps their promises, then we trust that person to keep future promises.   But if they fail to 
keep a promise, we may begin to distrust them.   Similarly, if we try a new restaurant and have a good 
experience, then we may make an assessment that the restaurant is excellent.   However, if we go back 
and have a bad experience, we will change our assessment and possibly never return.   We often make 
assessments of trust based on a single incident; this is why first impressions are so important. 

If we do not have direct experience with a person, organization, or object, we will make an 
assessment of trust based on the declarations of others whom we trust.   If a person whom we trust 
says that another person is an entertaining and stimulating speaker, then we may accept their 
assessment and invite the person to give a talk at a conference.  If a restaurant critic or friend reports 
on a new restaurant, then we may use their assessment to determine whether to try the restaurant.   If a 
popular computing magazine reports that a particular vendor provides better service than a competitor, 
we may decide to order products from that vendor.  We make purchases, hiring decisions, travel plans, 
invitations, and other decisions based on what others say when our own experience is inadequate. 

There has been a growing industry relating to the buying and selling of assessments of trust.   This 
industry includes organizations such as Consumer Reports; consultants and consulting firms with 
expertise in specialized domains; and magazines, newsletters, and articles which evaluate products, 
services, and organizations.    Although we often rely on the assessments of others, we give greater 

786 



weight to our own experiences, and we will not accept another person's assessment if it contradicts our 
own experience.   Instead, we may lose trust in the other person's assessments.   Wc arc most 
influenced when we lack experience of our own. 

We thus ground our assessments of trust on our personal experiences and on the experiences of others 
whom we trust.   We seldom base our assessments on mathematical theories   The Golden Gate Bridge 
is trusted, not because someone proved mathematically that it would not collapse, but rather because it 
has withstood over 50 years of service.   In 1987, it passed an impromptu "proof test" by supporting 
the largest load ever, 250,000 people.   By comparison, the Tocoma Narrows Bridge, which was built 
using the same theory, was destroyed by wind in 1940 [5,6]. 

This does not mean that formalism has no role in the establishment of trusted products.   Formal 
theories and methods may be used to validate certain aspects of a product, e.g., to show that a circuit 
design or software module will satisfy certain properties.  These methods can help the developers 
establish trust in their product before it is released.   However, the product itself will be assessed by 
users according to their standards.   If a software product shows no evidence of containing malicious 
code after several years of use, then it will be trusted to be non-malicious regardless of whether that 
property was formally proved. 

Trust is a Critical Element of Markets 

Assessments of trust are thus formed and shared in a world where we interact with the people, 
organizations, and objects around us.  This world is also a marketplace of transactions, and the value 
of a person, organization, or object in the market will be determined to a large part by the amount of 
trust that others have in them.   If person has a reputation of being a highly talented athlete and of high 
integrity, then that person will have many opportunities in the market. Similarly, if a service provider 
has a reputation of providing exceptional service at competitive prices, then it is likely to do well. 
But reputations are volatile.   Once a person or organization acquires a reputation of being 
untrustworthy, it can be hard to overcome that reputation even if the assessment was poorly grounded 

The word "market" is being used in a very loose way to refer to the space of all transactions, 
including social transactions that do not involve money.   A transaction is any exchange between two 
parties.   The transaction may involve loaning a book in exchange for the right to borrow one in the 
future or even for the friendship that will follow from the loan.   A conversation can be regarded as an 
exchange where two people share information, beliefs, thoughts, and emotions. 

In this market, people can trade as they choose, subject only to their own ability to make offers that 
are desired by others, and by the regulations and rules that are imposed by governments and private 
organizations.   The viability of a person, company, or product in the world is strongly determined by 
the trust they evoke in those they wish to interact and trade with.  The market will eventually weed 
out people, organizations, and products that arc considered untrustworthy, though this may take time if 
there is little or no competition in that domain.   In a sense, the market determines the criteria for trust 
based on the needs and demands of the people 

In the domain of aircraft, for example, the market has demanded planes that do not crash.   If a plane 
crashes and the cause of the crash can be attributable to a design flaw, then people will not fly on 
planes of that type.  This happened to the DC-10 after one incident, and there are people who still 
avoid it. 

787 



The New Paradigm 

The current paradigm of treating trust as a property is inconsistent with the way trust is actually 
established in the world.   It is not a property, but rather an assessment that is based on experience and 
shared through networks of people in the world-wide market.   It is a declaration made by an observer 
rather than a property of the observed. 

In the new paradigm, we see that a "trusted system" is one that produces assessments of trust.  These 
assessments are based on standards of performance and are grounded in observable behavior of the 
product in the marketplace.  The standards for trust will change as new technology, new threats, and 
new practices are introduced in the market.   Moreover, the assessments about a particular system will 
be continually remade each time the system is used.   Ultimately, a system is trusted if and only if its 
users trust it. 

The new paradigm has several implications relating to the Criteria and to producing trusted systems. 
The following touches briefly on these implications.   Further study is needed to develop a more 
complete understanding of the proposed paradigm shift. 

Security Criteria 

At first glance, it might appear that the current Criteria recognizes that trust is an assessment rather 
than a property since the security rating assigned to a system (C2, Bl, etc.) is an assessment. 
However, the Criteria are based on the assumption that trust is a property that can be built into a 
system following specified design methodologies rather than the premise that trust itself is an 
assessment made by users based on how well the observed behavior of the system meets their own 
standards. 

In the new paradigm, security criteria would articulate the (possibly unstated) standards that users 
employ when making assessments of trust; that is, they would formulate the concept of customer 
satisfaction in the domain of security.  They would emphasize those features that customers are most 
concerned about, for example, protection against break-ins and viruses, simple access controls, ease of 
use, and product support. 

Since users do not particularly care how a system is structured internally or the methodologies used 
during development, the security criteria would not specify how a system should be modeled, 
structured, designed, or developed as in the current Criteria.   For example, there would be no concept 
of security kernel, trusted computing base (TCB), or formal security policy model.   There would be no 
requirements on system architecture, design specification and verification, or configuration 
management. 

They standards would be specific to different types of products and stated in terms of actual users, 
processes, and entities rather than abstract subjects and objects.  Thus, they would not require 
"interpretation" of an abstract security model and they would be readily understandable to users and 
developers alike. 

To illustrate, the standards for operating systems might include discretionary access at the level of 
individual files and users, logging of all successful and failed login attempts, and break-in prevention. 

788 



The standards for database systems might include discretionary access at the level of records, 
attributes, and individual users, and logging of all database accesses at the relation level and all 
updates at the record level.   The standards for virus protection software might include the ability to 
detect any virus in a specified list and the ability to remove any detected virus.   The standards for 
networks and communication systems might include optional encryption using the Data Encryption 
Standard. 

There may be a common set of standards applicable to all types of products, for example, standards 
for product service and support.   Since many security problems arise from improper installation or 
operation, or from flaws that are discovered after the product has been released, product support is a 
significant factor is customer satisfaction and assessments of trust. 

The standards might be classified according to whether they are required for a certain "level of 
security" or for certain types of environments (banking, hospital systems, etc.).   For example, being 
able to withstand penetration attacks from legitimate users might be associated with a higher level of 
trust than preventing break-ins.   A product could be evaluated by checking off the standards that it 
meets. 

"Security benchmarks" could be included with some of the standards.   For example, consider a 
standard for break-in prevention.   This standard could be assessed through a "break-in benchmark" 
that could be run against a system to sec if it succumbs to certain attacks, for example those that use 
password cracking programs or exploit potential network protocol vulnerabilities    One can envisage 
other benchmarks, for example, to assess the ability of a virus protection package to detect viruses. 

This approach of assessing observable behavior and of using benchmarks is not new.   Indeed, it has 
arisen naturally in the market in response to customer needs.   There have been many published articles 
that rate or compare security packages in concrete terms, and vendors and researchers have developed 
software tools that can test for the presence of weak passwords, improper defaults and system settings, 
and various other vulnerabilities.   AH of these assessments and tools have been developed with the 
goal of meeting the needs of customers, and are entirely consistent with the way trust works in the 
world.   Thus, the paradigm described in this paper is already practiced in the commercial world, and 
the existing practices provide a useful starting point for determining security criteria. 

Although the Criteria is based on a model of trust that is inconsistent with the way trust works, it 
offers much towards the construction of new security criteria.   Many of the requirements relate to 
functionality needed by users, and while many are abstract, they could be made concrete.   The 
requirements for penetration and covert channel testing identify areas where benchmarks could be 
created, although it is unclear that protecting against most covert channels corresponds to any 
real-world market need.   The security criteria would be driven by market forces.   They would reflect 
the current standards for trust in the market, and they would change with market needs.   They would 
be developed by or at least with users representing a variety of different customer bases. 

Although there could be more than one set of standards, a national or international standard has the 
advantage of providing industry with a clear set of guidelines.  The standard(s) could be produced by 
the government through the current NIST/NSA effort or by other standards groups, for example, 
ANSI, the IEEE, and ISO. 

Although security criteria articulate community standards for trust, a system that meets the criteria is 
not necessarily trusted.   Ultimately, trust is always determined by users whose needs may deviate from 
the community standards.   This underscores the importance of product support from a vendor. 

789 



Producing Trusted Systems 

In the new paradigm, vendors would be free to design and develop systems using any architecture and 
methodology they choose.   The security criteria would not impose any particular structure or 
methodology on the customers.   Security kernels, formal models and methods, and other 
developmental requirements in the current Criteria would be used only to the extent that vendors 
perceive that the return on their investment justifies the cost.   The requirements in the current Criteria, 
coupled with the costly evaluation process, have led many vendors to conclude that it is simply not 
worth the effort to develop systems at those levels where formal methods are required. 
Removing these requirements opens up the possibility of considerable innovation in the development 
of trusted systems.   Researchers may be able to uncover structures and methodologies that produce 
trusted systems at considerably reduced cost. 

The current Criteria were developed with the objective of eliminating all security risks, at least at the 
higher levels.   By adapting a particular architecture and following a specified design methodology 
based on formal specifications and proofs, security risks would be avoided.   This risk-avoidance 
strategy has the disadvantage of inhibiting innovation and progress in system architecture and 
development.   If followed to its extreme, it will guarantee that "trusted systems" are archaic and not 
cost-effective.   As illustrated by Petroski [6], progress in engineering comes only when designers take 
risks.   Taking risks is essential in order to build systems that are more economical, functional, or 
aesthetically pleasing than their predecessors.   Moreover, we learn more from our failures than our 
successes, and progress depends on failures.   A strategy of creating criteria that eliminate security 
risks is especially dangerous because we lack worked examples, especially for applications such at 
database systems, transaction processing sysems, and hetcrogenous networks.   A better strategy is to 
encourage risk taking while disseminating knowledge about failures through channels such as CERT 
and security publications. 

Summary 

The current paradigm for trusted systems holds that trust is a property of a system.   I have argued that 
this paradigm, which underlies the Criteria for trusted systems, is inconsistent with the way trust 
works in the world. 

I then examined the concept of trust, showing that trust is an assessment made by an observer about a 
person, organization, or object observed.   These assessments are formed and shared in a world-wide 
market where people interact with each other, with organizations, and with objects.   Our own 
assessments are based on our personal experiences and on the assessments of others whom we trust. 

This understanding of trust as an assessment formed in a market leads to a radically different approach 
to the development of security criteria.   In this paradigm, the criteria would be a set of standards 
directly related to customer satisfaction.   The standards would reflect current market requirements, be 
specific to different types of products, and be stated in terms of actual users, processes, and entities 
rather than abstractions such as subjects and objects.   They would continually evolve to respond to 
new technologies, new threats, and new demands in the market. 

The criteria would not impose requirements on the internal structure of a system or on development 
methodologies.   The vendors would be free to choose their own methods for producing secure 

790 



systems.  Their systems will be evaluated according to market-based criteria for customer satisfaction, 
and they will be trusted as long as they meet the evolving standards and needs of the customers. 

Further study is needed to determine whether the proposed approach is sound for at least commercial 
systems if not military ones.   If it is, then additional work is needed to identify the current community 
standards in order to formulate new criteria.   Beyond that, the approach opens up the possibility of 
new security architectures and methodologies, and of news products that support the evaluation 
process, in particular security benchmarks. 

Acknowledgments 

I am grateful to Peter Denning, Hilary Hosmcr, Bob Lawton, and Steve Lipner for their generous and 
helpful comments on an earlier version. Once again, my colleagues saved me from at least one round 
of public embarrassment. 

References 

1. Chokhani, S., "Trusted Products Evaluation," Comm. of the ACM, Vol. 35, No. 7, July 1992, pp 
64-76. 

2. Denning, P. J., "What is Software Quality?" Comm. of the ACM, Vol. 35, No. 1, Jan. 1992, pp. 
13-15. 

3. Department of Defense, "Trusted Computer System Evaluation Criteria," DOD 5200.28-STD, 
December 1985. 

4. Lipner, Steven B., "Criteria, Evaluation, and the International Environment: Where Have We 
Been, Where Arc We Going?" Proc. IFIP-SEC "91; also in RISKS-FORUM Digest 12.46, October 
1991. 

5. Petroski, H., "Making Sure," American Scientist, Vol. 80, March-April 1992, pp. 121-124. 

6. Petroski, H., To Engineer is Human, The Role of Failure in Successful Design, Vintage Books, 
1992. 

791 



Executive Summary 

Perspectives and Progress on International Criteria 

Eugene Troy, Co-Chair 
National Institute of Standards and Technology 

Ron Ross, Co-Chair 
National Security Agency 

David Ferraiolo, National Institute of Standard and Technology 
Eugene Bacic, Canadian System Security Centre 

Jonathan Wood, UK Department of Trade and Industry 

Through the experiences, efforts, and cooperation of various 
national and international bodies, an evolutionary and spiralling 
process of Trusted Information Technology (IT) product and system 
evaluation has emerged. This process has included the efforts of 
Germany, France, Great Britain, the Netherlands, the European 
Community, Canada, and the United States. Starting with the 
Trusted Computer System Evaluation Criteria (TCSEC) and its 
associated evaluation process, a number of criteria and evaluation 
approaches have and will continue to be developed. 

It is universally recognized that government and commercial 
institutions rely heavily on information processing systems to meet 
their operational, financial, and information requirements. The 
integrity, availability, and confidentiality of key software 
systems, databases, and data networks is a major concern in all 
industrialized nations. 

The TCSEC was the first publicly available document that expressed 
general security requirements that could apply to a specific class 
of technology, e.g., operating systems. The TCSEC was originally 
published in 1983 and revised in 1985. It represented the 
culmination of many years of effort to address IT security issues 
within the Department of Defense (DoD) classified world. Since its 
publication, the TCSEC has influenced vendors, consumers, and the 
authors of other requirements documents both in the US and abroad. 

The TCSEC was developed to meet several objectives. First, to 
serve as a "metric" to measure the amount of security present in 
a computer system to be used for the processing of classified or 
sensitive information. Second, to provide guidance to the 
developers as to what security features to build into their planned 
systems. And third, to provide a method for uniformly specifying 
security requirements in acquisition specifications. 

The TCSEC is divided into four hierarchical divisions. The 
divisions are further divided into numbered hierarchical classes 
(e.g., Cl, C2) with higher numbered classes providing greater 
degrees of security. Each class represents the overall level of 
trust placed in a system, specifying a collection of requirements 

792 



in the form of features and assurances. A given class includes all 
the features and assurances of the previous class along with 
additional, more stringent features and assurances. 

With the advent of the proposed European Community as a political 
and economic force, a more coordinated method of defining computer 
security standards was needed. Germany had the ZSIEC, France had 
the "Blue-White-Red Book," Great Britain had the "Green Book," and 
the United States had the "Orange Book." Four European counties 
(Germany, France, Great Britain, the Netherlands) combined their 
knowledge to created a harmonized security criteria referred to as 
the Information Technology Security Evaluation Criteria (ITSEC). 
While harmonizing these criteria, consideration was taken to 
achieve commonality among their own countries as well as with the 
United States. For this reason, the members considered the TCSEC 
and elected to expand many of the premises while adding additional 
criteria and more detail. Version 1 was published in June of 1990, 
with a second version released June 28, 1991. Currently, the ITSEC 
is fixed for a two-year provisional period before further 
consideration is made to its modification and update. 

The ITSEC provides a basis for evaluating any specified set of IT 
security functionality in terms of correctness and effectiveness. 
It provides a methodology for gaining confidence in the correctness 
and effectiveness of security functions implemented in IT products 
and systems by use of a set of well-defined assurance evaluation 
levels. 

The ITSEC was the first criteria to consider separation of security 
features and security assurances. The ITSEC does not specify 
security functionality reguirements but permits the definition and 
use of a variety of functionality profiles. The ITSEC describes 
an approach called a Security Target for specifying and justifying 
the security functionality and level of assurance reguired in a 
particular product or system. The ITSEC prescribes a general 
approach that can be used to evaluate any combination of 
functionality that a vendor or sponsor sees fit, something the 
TCSEC levels do not provide. 

The Canadian System Security Centre (CSSC) of the Communications 
Security Establishment (CSE) recently published the final draft of 
the Canadian Trusted Computer Product Evaluation Criteria (TCPEC). 
The TCPEC provides many of the same benefits of the ITSEC by being 
adaptable to a variety of IT-based products and applications. It 
takes the approach of separating features and assurance. However, 
the TCPEC goes beyond the ITSEC in delineating both security 
feature reguirements and assurance reguirements. As such, this 
criteria serves two purposes: first, it provides a metric for 
evaluating trust placed in computer products; and second, provides 
a guide to manufacturers as to what security features to build into 
their products. The TCPEC allows for flexibility in choosing 
appropriate functionality based on environmental needs in terms of 
functional building blocks. 

793 



In the United States, a project has been underway since November 
1991, to develop the US IT Security Standard, sometimes called the 
"Federal Criteria." This project has the express goal of revising 
the existing TCSEC by taking into account all relevant later work. 
That work especially includes the ITSEC and the TCPEC. The Federal 
Criteria is being developed jointly by the National Institute of 
Standards and Technology (NIST) and National Security Agency (NSA) 
to provide a comprehensive criteria for specifying, developing and 
evaluating IT security. 

The Federal Criteria will include a more responsive means of 
specifying applicable security needs than the TCSEC. To achieve 
this goal, it will: introduce a new form of requirements 
specification to provide a clearer presentation of needs; elaborate 
upon the TCPECs concept of functional building blocks; refine the 
ITSEC concept of a "Security Target;" support a wide range of 
assurances to include a new "basic" level for low risk 
environments; and allow for a diverse approach to evaluations to 
provide for timely and cost-effective evaluations. 

While, ITSEC, TCPEC, and the new Federal Criteria addresses 
individual national and regional interests, care has also been 
given in building on previous and existing criteria efforts. As 
a result there exists great potential for harmonization that can 
lead to a common basis for allowing for mutual recognition of 
product evaluations among participating nations. 

794 



PANEL: Perspectives on MLS System Solution Acquisition 
- A Debate by the Critical Players Involved 

Joel E. Sachs 
Area Systems, Inc. 

2841 Junction Ave., Suite 201 
San Jose, C A 95134 

408-434-6633 

Panel Overview 

Both the availability of MLS products and attempts at acquiring MLS system solutions have increased 
in recent years. Several of these acquisitions have already been deemed less than successful. A number 
of reasons have been suggested: integration of these products is not straight forward, defining and 
mapping mission requirements to security and system solution requirements is difficult, and certification 
and accreditation is hard and not uniform. Acquiring an MLS system solution that results in an 
accreditable secure solution is not simple; moreover, there is debate and confusion as to what should bo 
specified during the initial phases of an acquisition that will help all parties involved throughout the 
life of the program. This panel will explore issues associated with developing a specification, 
statement of work, and evaluation criteria for successfully acquiring an MLS System Solution. The 
critical deliverables and their role in certification and accreditation will also be examined. 

The panel will explore these issues by role-playing the critical players in the acquisition process, as 
opinions vary depending on one's position within the process. Each of the seven panelists will act on 
the behalf of an identified role with which they are experienced. These roles are: End-User 
Organization, Program Management Office, Advising Security Agency / Certification Body, 
Designated Approving Authority, Systems Integrator, Security Engineering Subcontractor, Vendor. The 
panel will discuss the issues associated with the pre-draft Request for Proposal [RFP], pre-RFP, pre- 
award, and post-award phases of an MLS System Solution acquisition. The panelists will discuss and 
debate their needs and concerns regarding the development of a MLS System Solution, with respect to 
the role that they are playing. Specific questions will be asked of the panel relative to each 
procurement phase. 

Information is provided in the following sections to aid the audience with an understanding of the 
topics and issues of specifying, procuring, and accrediting MLS System Solutions. These sections include 
descriptions, example issues, and concerns of the critical players, as well as example critical questions 
for the panel. 

Panel Roles, Descriptions, and Areas of Concern 

End-User Organization 

The end user organization has a requirement for a system solution. The results of this procurement will 
be delivered to this organization for their use. 

Their main concerns are how to ensure that they get what they want, that it will be accreditable, how 
much will it cost, and how long will it take? They usually understand functional requirements 
reasonably well but often do not understand security and assurance requirements and security issues. 

Program Manager's Office IPMO] 

The PMO is the acquisition agency responsible for writing the RFP, awarding the contract, and 
supervising its execution. (Typically, a separate organization might be used to develop a system 
specification for the Statement of Work [SOW]. For the purposes of this panel, the player developing 
the specification will be considered merged with the PMO.) 

795 



The PMO's main concerns are system specification, cost, schedule, accreditation, and measuring the 
prime contractor's progress and compliance. The PMO understands the functional requirements as 
communicated by the end-users, but may not fully understand the security requirements, issues, and 
assurance needs that result from the mission and threat context. 

Advising Security Agency I Certification Body 

The Advising Security Agency is the End-User's and/or PMO's security arm that helps monitor the 
progress of the program to ensure that security within the program is adequately addressed. The 
Certification Body gathers the assurance evidence and performs risk analyses on the system. (For the 
purposes of this panel, these two roles have been combined as often happens in practice.) 

Their main concern is whether the delivered system meets the security requirements specified in the 
RFP, security functionality and assurance. The certification body must provide enough evidence to 
allow the DAA to make a proper decision regarding its accreditation. 

Designated Approving Authority [DAA] 

The DAA is the individual responsible for the operational aspects of the system. It is this individual's 
responsibility to approve the system for operation. 

The DAA's main concern is whether the system meets its operational requirements and its operational 
risk has been reduced to an acceptable level. Based on the evidence provided during the certification 
process, the DAA must make a decision whether the operational risk is acceptable given the evidence 
provided and the system's mission, and accredit or fail the system for operation. The DAA's 
accreditation of the system is his indication that he feels the risk is low enough or the operational 
need is high enough to allow the system to operate. 

Systems Integrator 

The Systems Integrator is responsible for the development and integration of the end-system as well as 
the management of all the subcontractors involved in the effort. 

Their main concerns are how to provide the required functionality, security, and assurance within the 
budgetary and time constraints stipulated in the integrator's proposal. Other areas of concern include 
how to manage the security engineering effort to produce a functional and usable system and how to 
handle requested changes to the end-system. 

Security Engineering Group/Subcontractor 

Security Engineering is responsible for the security portion of the overall system development. This 
team is composed of internal systems integrator personnel, a security subcontractor, or a combination of 
both. 

This team's main concerns are: how to relate component policies to the overall system policy, the trust 
requirements for each component, how to integrate trusted and untrusted systems, how to integrate 
multiple products into a single secure solution, and how to provide required assurance evidence. They 
may also be involved in determining the security requirements and policy, determining the appropriate 
assurance level, and how to provide assurance evidence. 

Vendor 

Vendors provide products that are used as part of end-user system solutions. 

Their main issues are: how to relate their product features to the desired functionality and assurances 
needed within an MLS system solution and how to advise the systems integrator on the best use of these 
features. 

796 



Example Questions for Panel 

Pre-Draft RFP Questions: 

1) How should security, mission, and functional requirements and their interrelationships be stated 
and distinguished? 

2) Should SOW state detailed security requirements, e.g., explicitly require segregation by either 
compartments or DAC, or should the SOW just simply state need to segregate planning from 
operations data? 

3) How should the SOW handle the migration of data (i.e, the downgrading / transmission issue)? 

4) Should trusted applications be explicitly required? 

5) What can be done at this stage to ease the certification / accreditation process? Who should do it? 
How should it be requested? 

6) How should threats be determined and documented? What information about threats should be 
provided to prospective bidders? 

7) Who should identify or develop the following: 

• Assurance Requirements • Assurance Deliverable Schedule 

• Security Architecture • MLS Concept of Operations 

• System-Wide Security Policy • System-Wide Security Policy Model 

• Certification and Accreditation Plan • System Threat List and Risk Analysis 

Who provides inputs, who writes, who reviews, who is the intended audience? When should 
these be done? Should the SOW be explicit? What should the DIDs require? 

Considerations: a) It's more work for either the Specifier, PMO, Certification Body, or Systems 
Integrator; b) Not everything is known up front; c) If not done up front, bidders get to decide what is 
required, and some may use this flexibility to undercut other bidders by potentially deriving 
insufficient requirements. 

Pre-RFP Questions: 

8) Who should develop/determine the MLS Concept of Operations? The PMO, Advising Security 
Agency, or Systems Integrator? When? 

9) What steps can be taken to ensure that an MLS system solution is proposed, not just an MLS 
operating system? 

10) When should the Advising Security Agency, Certification Body, or DAA become involved? How 
and to what degree? At different stages who are they helping and to whom are they responsible? 
Should this be reflected in the RFP and SOW? How? 

11) How and when should the overall assurance requirements be given? How should they be 
determined? 

12) Should a Certification and Accreditation Plan be included in the RFP? If not, when should it be 
developed? How should it be specified that the system must be certifiable or accreditable? 

797 



Pre-Award Questions: 

13) Should certification and accreditation be addressed in the proposal? How? 

14) How should EPL (evaluated products list) ratings and status be handled? Should inclusion on the 
EPL be a strict requirement? 

15) Which factors should be considered in the proposal evaluation criteria? 

a) the Technical approach? methodologies? architectures?  trade-offs? 

b) the Assurance / Certification and Accreditation approach? 

c) the Participating Personnel? 

16) As engineering process capability testing becomes routine, should security tests and exercises be 
administered as part of the evaluation of the bidders? If so, how should tests be given? If so, who 
should take the test? Should it be a group test? 

Post-Award Questions: 

17) How should the DAAs of the external systems to which the proposed system connects be dealt 
with? 

18) How should the detailed security requirements be determined? How and when should they be 
delivered? 

19) Where and how should security testing be integrated into the overall verification and validation 
of the system? 

20) Should assurance testing be performed separately? When? 

21) At what times within the development / certification process should assurance evidence be 
provided? Who is to review this evidence? How should it be developed? 

22) How should component policies be related to an overall system policy? 

23) How should assurance evidence be generated for an MLS System Solution that is composed of 
multiple trusted and untrusted products? 

24) How can vendors provide functional capabilities to assist in the integration of their products into 
the system solution? 

25) What assurance evidence can a vendor provide that enhances a product's appeal for use in a secure 
system solution for the System Integrator, Security Subcontractor, or Certifier / DAA? 

798 



Panel:    Security Protocols for Open Systems 

Chair: Paul A. Lambert, Motorola, Inc. 

Panelists:        David Solo, BBN, 
Doug Maughan, NSA, 
Russell Housley, Xerox, 
Dale Walters, NIST, 
Mike White, Booz Allen & Hamilton 

"Open system security" may seem to be an 
oxymoron, but this contradiction in terms is 
being addressed by many standards 
organizations. Standards are being proposed 
for communication protocols that will 
cryptographically protect information. This 
panel will examine the application of these 
security protocols to protect communication 
systems. 

One problem with selecting standards is that 
there are so many of them. Standards for 
security protocols are being pursued in 
groups that include ANSI, CCITT, IEEE, 
IETF, ISO/IEC, NATO, NIST, NIUF, and 
SDNS. The protocols that are being defined 
in these organizations include the Message 
Security Protocol (MSP), Network Layer 
Security Protocol (NLSP), Secure Data 
Exchange (SDE), Standard for Interoperable 
LAN Security (SILS), Security Protocol 
Layer 3 (SP3), Security Protocol Layer 4 
(SP4), and the Transport Layer Security 
Protocol (TLSP). 

In the Open System Interconnection (OSI) 
framework cryptography and security proto- 
cols are mechanisms to provide security ser- 
vices. These services include authentication, 
access control, confidentiality, integrity, and 
non-repudiation. Many of the security 
protocols provide almost identical security 
services. At least four "open" protocols are 
being developed to protect electronic 
messaging. Five more will provide end-to- 
end transmission security in the lower layers 
of the OSI reference model. 

The panel will explore the tradeoffs in apply- 
ing the various security protocols. The panel 
will also provide options and opinions for a 
security architecture, based on these 
protocols, for a variety of communication 
environments. All panelists are active 
contributors to their respective topic areas. It 
is hoped that their contributions will serve as 
a useful introduction to the application of 
security protocols. 

**>      **>       ^ 

**? X.509      SMTP 

% 

% % 

^ 
& 0 1 

Sp3 

So 

NLSP 

4* '<* 9o v 

•^ 

# 

o° <^ 

^ 
% 

799 



Executive Summary 
Panel 

"TMach" A Symbol of International Harmonization 
Ellen E.FIahavin, Chair, NIST 

Panelists: 
Brian Boesch, DARPA 

Dr. Martha Branstad, Trusted Information Systems, Inc. 
C. Ketley, U.K. Government 

Klaus Keus, German Government 
Trusted Mach (TMach) is a highly portable trusted operating system being 

developed by Trusted Information Systems, Inc. (TIS) under DARPA funding. In 
November 1990, officials from the national Institute of Standards and Technology 
(NIST), met with European officials and TIS to discuss initiating a preliminary 
developmental evaluation of TMach against the Information Technology Security 
Evaluation Criteria (ITSEC). As a result of this meeting, NIST finalized an agreement 
with the U.S. Defense Advanced Projects Research Agency (DARPA) to coordinate 
and oversee the TMach evaluation work to be done by Germany and the United 
Kingdom. Under the agreement, NIST receives funds from DARPA for the 
evaluations, negotiates the contracts with appropriate organizations in those 
countries, monitors the TMach evaluation contract performance for DARPA, and 
provides the contractual and management interface with the U.S. Government. In 
essence, NIST has become the contractual "middle-man" for DARPA. NIST is 
responsible to DARPA as the u.s. government agent for setting the evaluation tasks 
and coordinating the evaluation work. 

German and United Kingdom evaluation contractors were selected and the ITSEC 
evaluations of TMACH began in September of 1991. these multiple evaluations have 
been undertaken with he objective of understanding the different criteria and 
evaluation processes by seeing how they relate to a single system. 

TMach, which will provide users with both high-level trust and a Unix interface, is 
under evaluation by four different nations against three separate criteria. In the 
U.S., TMach is being evaluated by the B3 level against the Trusted Computer System 
Evaluation Criteria (TCSEC). Concurrent evaluations of TMach at F-B3/E5 against the 
Information Technology Security Evaluation Criteria (ITSEC) are on-going in the U.K. 
and Germany. 

TMach is also being evaluated against the Canadian Trusted Computer Product 
Evaluation Criteria in Canada   Claims are made that the various criteria are 
compatible with one another   By actually evaluating TMach against the three 
criteria, the different requirements of each criterion and evaluation process become 
visible. If desired, efforts to reconcile the differences can then be undertaken based 
upon detailed knowledge and understanding. 

The TCSEC and Canadian evaluations were initiated early in 1992. Experience 
thus far has uncovered several fundamental differences between the TCSEC and the 
ITSEC. The ITSEC imposes different documentation requirements, and distinctions in 
the evaluation process. These and other differences will be discussed in the panel 
presentation. 

800 



Executive Summary 

The Trusted Product Evaluations Program 
Process Action Team 

S. Nardone, National Security Agency 

In March of 1992, at the direction of the NSA Deputy Director for 
Information Systems Security, Dr. James Hearn, a Total Quality 
Management (TQM) Process Action Team (PAT) embarked on a six- 
month effort to enhance the effectiveness of the National Security 
Agency/National Computer Security Center (NSA/NCSC) Trusted Product 
Evaluations Program (TPEP). 

Since its inception in 1983, the TPEP has evaluated commercially 
available trusted products. These trusted products are Commercial-Off- 
The-Shelf (COTS) solutions providing security in the form of functionality 
and assurance for use in classified and/or sensitive system applications 
for the Department of Defense (DoD) and Intelligence Community (IC). 
The TPEP was established to help put trusted products into the hands of 
Automated Information System (AIS) users with risk. Its mission is to 
evaluate systems based on the Trusted Computer System Evaluation 
Criteria (TCSEC) and its Interpretations resulting in a level of trust rating 
(C1-A1) and placement on the Evaluated Products List (EPL). This list is 
posted on DOCKMASTER, the flagship information system of the NCSC, 
and distributed in a quarterly INFOSEC Product and Services Catalog 
published by NSA. 

After ten years of performing trusted product evaluations, the 
NSA/NCSC has decided to reassess its ability to meet TPEP customer 
needs. The Process Action Team will be briefing the national computer 
security community on the results of this six-month effort as a part of 
the 15th National Computer Security Conference. This briefing will 
provide insight into the background, methodology and criteria used 
throughout the process by the PAT. In addition, the PAT will detail the 
findings and implementation plans for any and all recommendations. 

801 



Executive Summary 
PANEL: Virus Attacks and Counterattacks 

Real- World Experiences 
James P. Litchko, Chair 

Director of Business Development 
Trusted Information Systems, Inc. 

Ms. Janet Keys Ms. Louise Mandeville 
Computer Security Manager Computer Systems Manager 

Headquarter NASA ' Miller, Balis & O'Neil, PC 

Mr. George Wellham 
EDP Audit Manager 
MNC Financial, Inc. 

Over the past two decades, viruses have migrated from fiction to our working 
environment. With the open availability of virus tool kits, virus cookbooks, and crea- 
tive programmers, experts believe that the number of unique viruses now circulating 
is over 2000 and suspect that new viruses are being developed at rate of two a day. 
Some project that there will be over 10,000 viruses by the year 2000. Corporate prof- 
its and credibility levels now have a direct relationship to the reliability and availabil- 
ity of information systems and the integrity of their data. With the trend to link the 
systems over networks, the losses resulting from a single virus attack increases from 
thousands of dollars to millions. 

What is required is open discussion of experiences to increase the understand- 
ing of the threat and effective prevention and reactions. In the past, few would 
openly admit that they had been a victim of a virus attack, less would openly talk 
about the specifics of an attack. All of the articles and discussions about the ex- 
pected losses and effectiveness of counter-measures are very interesting, but very 
impersonal and they do not truly answer the real questions: 

What really happens during and after an attack? 

How effective were those countermeasures? 

Where were the pit-falls? 

What is the real impact of a virus attack? 

Are there effective pre-attack legal countermeasures7 

What were the near-term and long-term effects? 

Each of the panelists were victims and survivors of actual virus attacks on real- 
world computer and network systems in both commercial businesses and govern- 
ment agencies. During the panel session, each member will describe the attack on 
their systems and their actions to counter-attack. The corrective actions that will be 
discussed by the panel will include those that are technical, procedural, organiza- 
tional, and legal. Through interactive discussions with the audience and the panel- 
ists, the panel will provide their prospectives and answers to the above questions 
and to additional audience questions 

•U.S.   G.P.0.:1992-625-512:60546 802 


